F\{fﬂ 209

T TV

bl L S N

.y

?\“ -] fef /.

il

“<\ixr7////“”

N T

A

THE

-

C6309
COOKBOOK

by carl d. warren

Red text isthe original error correction in the book

For corrections to the PDF or owners of copyright of the book want to removeit,
please contact by Iuis45ccs@hotmail.com.

This PDF is made only for the preservation of information of the color computer,
not to affect the copyright, will always be preferable to the original purchase,

the PDF also aids in searches in the book.

Or if you can not easily acquire on the market, asin my case in Venezuela.
Some pages were scan at 300 DPI (if font small) but most are 200 DPI,

and ABBYY FineReader 8.0 Professional Edition

Dedication

For ACE
No questions asked

THE

MCG6809
| COORBOOK

by carl d. warren

TAB 'TAB BOOKS Inc

UUUUUUUUUUUUUUUUUUUUUU

FIRST EDITION

SECOND PRINTING

Copyright © 1980 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Warren, CarlD
The MC6809 cookbook.

Includes index.
1. Motorola 6809 (Computer) |.Title

QA76.8.M67W37 001.64 80-23359
ISBN 0-8306-9683-0
ISBN 0-8306-1209-2 (pbk.)

@ is a trademark of Motorola Inc.

f——AAA

I
L1y

Contents
Acknowledgments 6
Preface 7
General Descriptions 9

Introduction to the 6809—Basics of the 6809 uP—High Level
Language Processor—Changed Configuration—The Right
Nomenclature—Variety in Clocks—6809 MPU Signal
Description—Pulling the Schmitt-Trigger—Tracing the
Interrupt—Establishing a System

6809 pP Software Architecture

The Software Tale—Registers, Pointers and Things—Condition
Codes Are Special—6800/6809 Software Incompatibilities-
Equivalencies—Performance Summary

Addressing Modes

Basic Concepts—Inherent Addressing Mode—Immediate
Addressing—Extended Addressing—Direct Addressing—
Register Addressing—Indexed Addressing—Indexed Indirect-
Relative Addressing—Summary

Into the Instruction Set
Push-Pull and Address It—Individual instructions

MEK6809EA Assembler
Basics of the Assembler—Typical Requirements—
Expressions—Symbols—Assembler Listing

Implementation of VTL-09
Direct and Program Statements—Preliminary Concepts—
Arithmetic Operations

Appendix A Motorola 6809D4

Highlights—Model Types—Expansion—Software Features—
Added D4B Software Features—MEK6809D4 Description—
MEK68KPD Description—Sample Programs

Appendix B Hexadecimal Values of Machine Codes

Appendix C Programmer's Card
Appendix D Instruction Index

Index

25

37

56

112

118

134

148

153

169

176

—

Acknowledgments

When any work such as this is embarked upon, it requires a
massive amount of support from a variety of sources. It was
necessary to rely upon the suggestions and resources of a number
of people and companies. Among these people are; Ron Denchfield
of AMI who supplied, most of the figures and the programmer's
card, Tim Ahrens, Bill Clendinning and Irwin Carroll of Motorola,
who provided various tables and important suggestions, along with
the 6809D4 evaluation unit.

Since this book is about computer technology, it is only ap-
propriate that it was created with aid of a computer. The manu-
script was prepared on a Heath H-89 microcomputer, and printed
on an Epson TX-80 dot matrix printer. The software that was used
consisted of avariety of products. Among these were the editor and
text formatter available from the Heath users' group (HUG), the
PIE editor from the Software Toolworks, and a very specia pro-
gram caled COPY that permits interchanging software created
under HDOS to CP/M compatible files. This unique piece of magic
was created by Bob Mathias, a genius of our times. Other software
was supplied courtesy of Tony Gold at Lifeboat Assoc. These
consisted of Organic software's Textwriter Il for text formatting
and Digital Research's CP/M optimized for a 4200H base.

Specia thanks is reserved for the finest managing editor in the
magazine industry today, Jordan Backler. It is because of his
suggestions, coupled with those from fellow EDN editors Bob
Peterson, and Ed Teja, that this work is as concise as it is.

My wife Anne and daughter Tami played probably the most
important part in the creation of this book—putting up with the
writing process and making sure the coffee was always available.

6

LAY

Preface

As a result of the profliferation of microprocessors (pUP), since
1977 hardware and software designers have been able to extend
their capabilities in terms of creating useful products for everyday
life. Each day, new processor introductions are opening up even
more exciting vistas. Unfortunately, there is a problem associated
with the introduction of the newer devices: how to correctly use
them for maximum benefit and efficiency.

This book, like many of itstype, attempts to give the engineer
or technician an expert command of the fundamentals of the 6809
microprocessor (UP), and the basic skills for writing 6809 assem-
bly language level code. In systematic fashion, it proceeds from
analysis of the microprocessors design to its important electrical
characteristics. It continues with discussion onmatterslike inter-
na logic, comparison to the 6800, interfacing to peripherals,
software architecture, addressing techniques and the instruction
set. It concludes with advice on how to build or make use of
existing 6809 based systems. Further enhancing The MC6809
Cookbook's usefulness is the inclusion of a programmer's card,
provided courtesy of American Microsystems Inc. (AMI).

The MC6809 Cookbook may be studied as a course, proceed-
ing from the simple to the more complex. However, it should be
more appropriate viewed as areference source to be called upon as
necessary. Therefore, | have kept the idea of a compact and concise
reference work utmost in my mind while creating this book. Asa

result of this goal, the diversified contents are readily identifiable
to facilitate the finding of specific principles or functions associated
with the 6809 pP.

The MC6809 Cookbook aims to be comprehensive without
being cumbersome. It seeks in al areas to be exact, clear and
succinct.

Throughout this book, pP, and pC are used to mean micro-
processor and microcomputer, respectively. These are stylistic
nuances used at EDN magazine, and permit brevity without being
imprecise.

cal d. warren

{1}

IR

General Descriptions

The 6809 /xP, developed by Motorola and second sourced by
American Microsystems Inc. (AMI), is a high performance mul-
tifaceted device. It is considered by many industry observers and
Motorola to be the interim processor between 8-bit and 16-bit
devices. The general design philosophy of the device seems to
support this conjecture in that it permits the handling of 16-bit
registers with powerful instructions.

INTRODUCTION TO THE 6809

‘ The 6809 pP is unique because it represents an upward
growth device from the ubiquitous 6800 (UP. Thisupward growth is
in the form of software compatibility, at the source code level, and
apparent similar operation of the two devices.

As aresult of these similarities, it is possible to design the
6809 pP into a variety of applications. Among these applications
are process control, automobile system monitoring, television
sets, intelligent terminals and other devices more far reaching than
this book could even begin to mention. As an example of the use of
the 6809 pP was recently incorporated into what will more than
likely become the small computer system of the decade, theRadio
Shack TRSS Videotex (Fig. 1-1). This unit not only uses the 6809
/xP, but the entire spectrum of Motorola support and peripheral
chips. The point is that it shows the flexibility of the 6809 uP.

Fig. 1-1. Incorporating the 6809 UP in concert with a host of Motorola compati-
ble peripheral device chips, the Radio Shack TRS-80 Videotex is designed to
transform the home television and telephone into a high-powered communica-
tion system (courtesy of Radio Shack).

Flexibility and ease of system integration are important fea:
tures of the 6809 P, but are only representative of just a minor
portion of the processor's capability. Throughout the rest of this
book, you will be introduced to the specific features and functions
of the processor and given sufficient information to make it work
for you.

BASICS OF THE 6809 pP

The 6809 pP is an 8-bit NMOS device. With dl the different
mnemonics around—buzz words—it can be extremely difficult to
figure out what someone is taking about in device types. For
example, | say the 6809 pP is an NMOS device which it most
surely is. Metal Oxide Substrate (MOS) technology isamethod of
cregting integrated circuits (ICs); the N or P indicates the type of
channd the device has built into it and does, in fact, refer to
negative or positive. But for the purposes of this book, auffice it to
say the device is NMOS. An NMOS device exhibits an eectron
mobility about 2.4 times that of PMOS. Consequently, the NMOS
device outperforms smilar PMOS devices in speed and power.
This means more power to you, the designer, in asmaller and in
most cases less expensive package.

10

The processor is designed, according to Motorola engineers,
for real-time and character manipulation programming. This de-
sign philosophy implies that the device is ideal for such applica-
tions as real time, or event, data collection. Applications such as
this require that the processor work in concert with data acquisi-
tion probes like thermocouples, strain gauges or flow sensors to
name a few. The 6809 uP offers the important characteristics of
being able to respond quickly enough to handle the influx of data
from this type of device.

The character oriented capability of the 6809 uP makes it an
excellent choice for word processing applications. In this type of
application, ASCII data is manipulated in several ways to create
useful output data. Word processing implies that the puP must work
with a variety of peripheral devices, afunctiona plus of al 68XX
type parts.

HIGH LEVEL LANGUAGE PROCESSOR

Another feature of the 6809, UP is that it is a byte-oriented
device rather than operating on each bit of the 16 available on the
address bus. This single characteristic enhances the processor's
ability to function, with efficiency, as a high-level language compu-
ter.

The reason this processor, or any processor for that matter,
works better as ahigh level language processor if it isbyte-oriented
isthat abyteis 8 bitslong. Itis directly equatable to a character of
some type, for example the letter A. High level language like
COBOL and FORTRAN work by comparing block structures made
up of characters to determine a task. Bit-oriented devices must
first build a byte from individua bits, store it in aregister and then
permit the language instruction to perform some work or compari-
son. The byte-oriented device makes the assumption that registers
are filled with bytes, thus speeding up execution times. This fact
does not preclude bit operations that must take place in math
functions.

Although the 6809 pP is not a pin-for-pin replacement of the
6800, itisnot all that different in the sense of compatible functions
and software. For example, the 6800 pP exhibited one stack
pointer; the 6809 has two. The 6809 pP has two index registers as
opposed to the single index register of the 6800. In relationship to
the improved indexing capability of the device, both the stack
pointers and program counter can be indexed. This feature makes
it. much easier for the programmer to manipulate data held in the
processor's registers.

11

CHANGED CONFIGURATION

The 6809 pP, as mentioned, is not a pin-for-pin replacement
for the 6800 pP; nor was there any thought for it being so. Theidea
behind the 6809 pP was to make it an optimum device, which
meant that pin outs and pin definitions would change. Figure 1-2 is
a representation of both the pin-outs of the 6800 and the 6809
microprocessors. You will notice that for the 6809 P, two ver-
sions exist. The versions demonstrate the difference in the clock
and at the same time represent the functional features of the 6809.
To summarize these functional and electrical features:

e The 6809 WP incorporates an 8-hit data and a 16-bit
address bus.

« The device is compatible to the MC6800 bus structure as
defined by Motorola. (For further information, consult the M6300
microprocesor applications manual).

e The 6809, uP, housed in a 40-pin package, requires only
a single +5V supply.

» The 6809 uP, exhibits the same interfacing characteris-
tics as the 6800. This means that it is compatible with TTL logic
levels, and consequently makes total system integration fairly
easy.

« Addition of extra features like the Fast Interrupt Request
(FIRQ). The FIRQ permits the 6809 uP to drop everything and
handle high speed interrupts, aswould be necessary in data acquis-
ition systems.

PIN ASSIGAMENT
E | ST— | a0-a15
Epy = | a0 A5 LI -— DO 07
Gy —=q - D0 - 07 MRDY —] = Equr
TS —1 0 -
- _ BRED 56809 oyt
HALT —~ - — P AV
fu AT 56809E o AT i
i RESET —» = Ba RESET —- |- B2
N .
|+ &5 [T |-+ 85
-2 BUSY FIRG —w
= it IRD —-

Fig. 1-2. Although compatibility exists between the 6809 and 6800 at the source
code level, pin assignments differ since the 6809 offers more functions than its
predecessor. (A) This represents the 6800 with its standard, pin assignments.
(B) and (C) Block diagrams of the versions of the 6809 uP. Notice the pins
named TSC, LIC and BUSY (courtesy of Motorola Semiconductor Products Inc.
and American Microsystems, Inc.).

12

» Vectored interrupts alow the 6809 WP to locate an inter-
rupt servicing routine within a minimum amount of time, and return
back to the starting location without destroying the current data.

» The 6809 uP incorporates an onboard oscillator which is
four times the input frequency of the crystal. The 6809E version
featuresan external clock. SeeFig. 1-3. Thisalowsthe 6809 uP to
sync with an external clocking source such as that being generated
by a clock source from another system.

» The 6809 MPU has two memory functions not found with
the 6800: MRDY that extends data access times for use with slow
memory, and DMA/BREQ that permits quick access to the bus for
Direct Memory Access (DMA) and memory refresh.

The electrical differences in the two versions are shown in
Figs. 1-3A and 1-3B. Basically, the two versions of the 6809 uP are
the same, with the exception of the clocking mode. Table 1-1
defines the Read/Write for each version of the microprocessor.
Table 1-2 lists the electrical characteristics of the processor.

THE RIGHT NOMENCLATURE

Asyou proceed through this book, you will notice reference to
a part preceded by an S. This nomenclature defines the part as
being from AMI. When the device being referred to is a Motorola
part, the number is preceded by an M or MC. However, for the
sake of clarity | have adopted the generic term—=6809. There are
some tables and figures in this book that do make reference to the
specific manufacturers' devices.

VARIETY IN CLOCKS

The 6809 pP incorporates the choice of two clock functions.
The basic 6809 processor exhibits an internal clock (oscillator). To
make use of this clock, an external crystal is connected between
EXTAL and XTAL pins 39 and 38. Netting or filter 0.01 disc
ceramic capacitors are on either side to the system ground (Fig.
1-4). When the 6809 is in this configuration, a synchronization
signal is available at the E/out terminal (pin 34). This available
signa can be used as the system clock with dl other devicesin sync
with it.

The output that is available on pin 34 is at the basic processor
frequency and for most applications is connected to the Enable (02)
input of 6800 peripheral devices, as shown in Fig. 1-5. This
simplification of the clocking system, with 6800 family compatibil-
ity, eases system design and integration.

13

56809 S6809E
INPUT OUTPUT INPUT OUTPUT
EXTERNAL
- EXTAL, ADDRESS CLOCK ADDRESS
2 XTAL~| :> AO-A1S INPUT o)) a0-A15
Ew. Qu
MEMORY READY DATA THAEE.STATE DATA
(MBDY) CZ\,/ - - ’< > o-07
BUS REQUEST o CONTROL]
— (TSC) 56809
» 56809 SYSTEM CLOCK
(DMA BREQ) {Eou oar—] € READ WRITE
HALT —= QUADRATURE OUT (Qour)
RESET I—(ADDRESS & DATA STABLE) RESET —=f 8s
- FAST INTERRUPT ’STATUS SIGNALS
FAST INTERRUPT 5 SEADWRITE 00 e A
(RW)
REQUEST] jioig
(FIRQ) i PROCESSOR BUSY
7Y INTERRUPT REQUEST —| — Busv;
INTERRUPT REQUEST —{ } STATUS SIGNALS ~ (IRQ)
(1RQ) |—Bs NON-MASKABLE —| L S pisTRUCTION
NON-MASKABLE —=] INTERRUPT s
INTERRUPT (NMI)
(NM) [®

Fig. 1-3. Providing flexibility to the system designer, the 6809 WP is built with
either an internal oscillator (A) or for use with an external clock (B) (courtesy of
American Microsystems, Inc.).

Besides the timing signals discussed, another sgnd caled
the Quadrature output (Q/out) is available. The purpose of this
signd isto dgnify that addresses and data are stable. This stability
tells the system that operations have settled down and something

else can take place.

Table 1-1. Read/Write Timing
American Microsystems, Inc. and Motorola

(courtesy of
Semiconductor Products Inc.).

Read/Write Timing

56809 S68A09
Symbol Parameter Min. | Typ. | Max. | Min. | Typ. [Max. | Min.
™ Cycle Time 1000 { 667 [500
[Total Up Time 975 640 | | am0
[Peripheral Read Access Time | 695 440 | [20 |
Vit Data Setup Time (Read) 80 60 ! ; W
[Input Data Hold Time 10 10 I 10
[Output Data Hold Time 30 30 5 BN
L NERE
[Address Delay 200 140
Upow Data Delay Time (Write) 205 180
tavs Ejpw 10 Qg Time 250 165
th Address Valid 0 Quyy 25 15
G, Processor Clock Low 450 210
[Processor Clock High 450 220
sk MRDY Set Up Time 60 0
200 110
200 140 110
200 140 10
125 125 [125
100 ! 100 100
Rise and Fall Time. 5 i 5 I
Processor Control Rise/Fall | 100 | 100
"Q Rise and Fall Time 5 ! % | 5 Lo | s
towat Q Clock High 150 : 260 { 220

$68B09

Typ.

Max. | Unit | Condition

L ons T

| —

i ns b = L tan=tosk
ns L = teve = iy
ns
ns
ns
ns

110 ns
145 ns
125 | ns
ns
ns I
ns
ns
ns
ns
ns
ns
ms
20 | ns
100 | ns
20 | ns)
ns

14

Table 1-2. Electrical Characteristics (courtesy American
Microsystems, Inc. and Motorola Semiconductor Products Inc.).

Electrical Characteristics (V¢ = 5.0V + 5%; Vgs= 0, To = 0°C to + 70°C unless otherwise noted)
Symbol l Parameter Min. VVTyp [Max. 'l Unit Lri(iogqilion -
Vin " Input High Voltage Logic. EXtal | “ Voo | Vde |
l Voo | o
Vi l Input Low Voltage Logic EXtal, | Vas+ +08 Vde |
. : 1 J
Tia Input Leakage Current _ Logic | L1025 { uAde | e =1
Output High Voltage DODT | Vis+ zos,mdc‘ Ve =min
Von A0-A15.RW. Q.E Vde - 1454Ade, Vi = min
BA,BS - - 100xAde, Ve = min
Vor, 77()ulpu{ Low Voltage Ves+05| Vde | Ip,a-20mAde, Ve =min
Py Power Dissipation e w
Cun capmunce: DyD; 10 15
Logic Inputs, EXtal 7 10 pF V=0, T, =25°C, f = 1.OMHz
Com l ApAj5 RW 12 o
f | Frequency of Operatxon S6809 4
fxran | S68A09 6 | MHz
fxTAL (Crystal or External Input) S68B09 8
S - ,
Three-State (Off State) Input Current Dy 20| 10
Trst ree State ate) Input Cu A’UV A.;—,Pl({f[\;’ o #Ade | V=040 24V, Ve = max

Theexterna dock version, indicated by an E, requiresthat an
external clock source be implemented. This external clock must
generate an output at the MPU frequency. Thetiming sgnd E is
similar to the 6800 bus timing signd 02; Q is a quadrature clock,
sgnda which leads E. This quadrature signal has no pardllel onthe
6800. The importance of these signals are that addresses from the
MPU will be valid with the leading edge of Q (Fig. 1-6). Datais
latched on the fdling edge of E.
Yauwill noticefrom Fig. 1-3 that the external dock version of
the 6809, the BREQ input, isreplaced by atri-state (TSC) control.
This control serves to place the address and RW in the high

¥
w o

- e -
Y Con Cout
8MHz 18pF 18pF

0

Crystal Connections and Oscillator Start Up

0

6MH: 200F 20pF
MK 200 24pF

A

“Nolle These are representative AT cut crystal parameters only

6809 Crystal Parameters®
ISEMHI 400MH 6 OMHI B OMHz
as 60t S0 30501 2040

[I5pF 6SpF 46pF 46pF

[0159F 025pF 01 02pF 01 02pF
oo 250F 25pF 25pF 25pF

[40K 30K 20K 20K

I Parameters Are - 10°,

Crystals of ather types of cul that work may also be used

-0+ -
T

. o ¢ —39
S

I
Co

Fig. 1-4. The clock on the 6809 is invoked by tying pins 38 and 39 together via a

crystal and filter capacitors (courtesy American Microsystems,
Motorola Semiconductor Products Inc.).

inc. and

15

16-BIT ADDRESS BUS

] l l
ADDRESS | ADDRESS
DECODER ‘ DECODER
I I
— [___,_
ADDRESS] ADRESS J ouTPUT INPUT
DECODER DECODER DEVICE DEVICE
Loseooen | [oo _
| L T I
SR
—+ T oquJLT”_~ INPUT
HIP ENABLE prmrrrm—{ CHIP ENABLE i e
RAM Rom CHIP ENABLE CHIP ENABLE
i
. , T
S
i o i l HER ll, | | .
: Dt e — e} { |-)— . + -4 .
,3853 o -+
D
Ds et -
[o7] U s —] i S S
D - 4 —_— -

8 BIT DATA BUS 34

Fig. 1-5. Interfacing the 6809 pP to other devices is easy by taking the output
from pin 34 and tying it to the chip enable pin of the peripheral chip. In this figure,
the processor is tied to RAM, ROM and output devices. Pay particular attention
to the direction of the data on the data bus. The output from 34 is tied to the chip
enable of the output latch and input buffer.

cycle of any ingtruction. This sgnifies that the next instruction
cycle is the opcode fetch and acts like a pipeline fetch, thus
improving processing throughout. The processor BUSY sgnd
facilitates multiprocessor applications by dlowing the designer to

START OF CYCLE END OF CYCLE (LATCK DATA)
|

TN / N

l‘-—' tys l
| C2av |
’ | / \ |
| ADORESS VALID :

Fig. 1-6. E/Q relationship (courtesy American Microsystems, Inc. and Motorola
Semiconductor Products Inc.).

16

impedance statefor DMA or memory refresh. The E and Q pinsare
replaced by two status outputs: Last Instruction Cycle (LIC) and
processor busy signal (BUSY). TheLIC isactivated during thelast
insure that flags being modified by one processor are not accessed
by another smultaneoudly.

The 6809 PP, in norma operation, fetches an instruction from
memory and then executes the requested function. This opera-
tiona function begins when the processor is started—RESET—
and repeated until forced to cease. This stopping of the operation
can be from a multitude of sources including interrupts, hard and
Kft, or via a specid ingtruction that permits the processor to
HALT but also save the contents of the registers—that is, waiting
to proceed without impacting the computing ability of the proces-
or.

6809 MPU SIGNAL DESCRIPTION

This section describes the functiond purposes of the pins
available on the 6309 LP.The reason, isto create asolid foundation
for the chapters on addressing and the ingtruction set.

The information contained in this section is, in Mot cases,
directly from AMI literature. | have attempted, where necessary,
to further darify or amplify upon those items that seem vague.

Power (Vs V) Pins 1 And 7. Two pins are used to supply
power tothepart: V_isground, or Ovolts, whileVq is +5V witha
5% tolerance. This holds true whether the device is of the internal
or externd dock variety (Fig. 1-7).

Address Bus(Ap- Ass) Pins 8-23. Sixteen pins are used to
output address information from the MPU onto the address bus.
When the processor does not require the bus, for adatatransfer, it
will output address FFFF;6, R'W = 1 and BS = 0 (Table 1-3).
Addressesarevdid ontherising edge of Q. All addressbusdrivers
are made high-impedance when output Bus Available (BA) ishigh.
Each pin will drive one Schottky TTL load and typically 90pF (Fig.
1-7).

Data Bus (Do-D;) (Pins 24-31). The eght pins, desg-
nated for data, provide communication with the system bidirec-
tiond data bus. Each pin will drive one Schottky TTL load ad
typicadly 130pF (Fig. 1-7).

Read/Write (R/W) Pin 32. This Sgnd indicates the direc-
tion of the deta transfer on the data bus. A low indicates that the

17

Block Diagram Pin Configuration

00-D7

AD-A1S | s O S |
> -V, v (] s [] waur
16 — v, wa] 2 39 []
5 wl]s 38 [] exrm
PROGRAM
te— COUNTER |o—s] amo [« ar [neser
(PC)
———— INSTRUCTION ss[]s 36 | | mnoy
¢ C =y DECODE
(L) (IR) g s (]o
Vel 7 34 £
le—s|STACK POINTER[, « [H
2 (S) wf]s 23 [owwseo
@
o INDEX) - alls 2 {] aw
@ STe) RESET
u REGISTER fe—s| & RES 0 N
S6809
§ \N(DVE)X 2 FiRG ”[- il
Interrupt mal]n 0[] o
2 I+ HEG;SWR e 2 g;"‘::’(ﬁ N 560809
2 1] z #5180 ml]n »[]o
X g BREG
4 w DMA/BREQ
g (0o = 2 3 ASE B) %n:
= - A6 " b 04
z GIRECT]
z 27| cona Bus FACT
“{7"(";‘;5 CODE [+ Control BA mls w{]o
. s [] e 2 {06
— 8BS
—— XTAL (] ulJor
ao] a5
ALY EXTAL w0l af]
~ MROY an] 2 []an
L_J
a2z 21 []an
=

(A ©

Fig. 1-7. (A) Block diagram. (B) Pin configuration (courtesy of American Mic-
rosystems, Inc. and Motorola Semiconductor Products Inc.).

MPU is writing data onto the data bus. R/W is made high impe-
dance when BA is high. R/'W is vaid on the rising edge of Q.

RESET. Pin 37. A low level on this Schmitt trigger* input
for greater than one bus cycle will RESET the MPU. The RESET
vectors are fetched from locations FFFE;¢ and FFFF when
interrupt acknowledge is true BABS=1). During initial power on,
the Reset line should be held low until the clock oscillator is fully
operational .

Because the 6809 uP Reset pin has a Schmitt-trigger input
with a threshold voltage higher than that of standard peripherals, a

Table 1-3. MPU State (courtesy of American Microsystems, Inc.).

MPU State
BA BS
0 0 Normal (running)
0 1 Interrupt Acknowledge
1 0 SYNC Acknowledge
1 1 HALT or Bus grant

18

simple R/C network may be used to reset the entire system. This
higher threshold voltage insures that al peripherals are out of the
reset state before the processor.

PULLING THE SCHMITT-TRIGGER

A Schmitt-trigger is a specia type of flip-flop circuit that
permits feedback and is sometimes referred to as a regenerative
switching circuit, having two stable output states. The Schmitt-
trigger is frequently used in timing circuits to mark the instant
when an input voltage reaches the trigger level, converting a
sinusoidal input voltage into a pulse train at the output. Sinceit is
not within scope of this book to provide complete explanations of
flip-flops, | recommend Electronic Circuits Digital and Analog, by
Charles A. Holt, John Wiley and Sons, New York.

HALT—Pin 40. A low level on thisinput pin will causethe
MPU to stop running at the end of the present instruction and
remain halted indefinitely without loss of data. When halted, the
BA output is driven high indicating the buses are high-impedance.
BS s aso high which indicates the processor is in the Halt or Bus
Grant State. While halted, the MPU will not respond to external
real-time requests (FIRQ, TRQ), athough DMA/BREQ will a-
ways be accepted and NMI or RESET will be latched for later
response. During the HALT state O and E continue to run normal-
ly. If the MPU is not running (RESET, DMA/BREQ), a halted
state (BA and BS = 1) can be achieved by pulling HALT low while
RESET is still low. If DMA/BREQ and HALT are both pulled low,
the processor will reach the last cycle of theinstruction (by reverse
cycle stealing) where the machine will then become halted (Fig.
1-8).

Bus Available. Bus Status (BA, BS) Pins 5 and 6. The
Bus Available output is an indication of an internal control signal
which makes the MOS buses of the MPU high-impedance. This
signa does not imply that the bus will be available for more than
one cycle. When BA goes low, an additional dead cycle will elapse
before the MPU acquires the bus. The bus status output signal,
when decoded with BA, represents the MPU state (vaid with
leading edge of Q).

TRACING THE INTERRUPT

When an interrupt occurs, the processor must respond in
some manner. The 6809 P responds by going to a location in
memory and executing a specific routine. In al cases, the proces-

19

HALT and Single Instruction Execution for System Debug

IWSTRUTION
oPCoDE

Fig. 1-8. HALT and single instruction execution for system debug (courtesy of
American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

sor generates asignd caled an interrupt Acknowledge. It is indi-
cated during both cycles of a hardware-vector-fetch (RESET,
NMI, FIRQ, IRQ, SWI, SWI2, SWI3). Thissignal, plus decoding of
thelower 4 addresslines, can provide the user with an indication of
which interrupt level is being serviced and dlow vectoring by
device, as shown in Table 1-4.

Table 1-4. Memory Map for
Interrupt Vectors (courtesy of American Microsystems, Inc.).

Memory Map for Interrupt Vectors

Memory Map for

Vector Location Interrupt Vector

Description

MS LS
FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB SW
FFF8 FFF9 IRQ
FFF6 FFF7 FIRQ
FFF4 FFF5 SWi2
FFF2 FFF3 SWI3
FFFO FFF1 Reserved

20

Other signals that play an important role either during an
interrupt condition or HALT condition are Sync acknowledge and
Halt/Bus grant (Fig. 1-9). The Sync acknowledge is indicated
while the MPU is waiting for external synchronization on an inter-
rupt line. Halt/Bus Grant is true when the 6809 pPisinaHALT or
Bus Grant condition, as explained previously under HALT.

Nonmaskable Interrupt (NMI) Pin 2. The Nonmaskable
Interrupt pin is very similar to the IRQ pin 3, except that the
interrupt input is nonmaskable from the MPU. This means that a
program cannot inhibit the interrupt, and it has a higher priority
than IRQ or FIRQ, or for that matter of software interrupts (Fig.
1-10).

The NMI is invoked when a negative wedge is input on the
pin. When recognized, the entire machine state is saved on the
hardware stack. However, once the machine is reset, the NMI is
not recognized until the first program load of the Hardware Stack
Pointer (S. The pulse width of NMI low must be at least one E
cycle. If the Winput does not meet the minimum set up with
respect Q, the interrupt will not be recognized until the next cycle.

Fast-Interrupt Request (FIRQ) Pin 4. It is unique to the
6809 pP. When a low level signal is detected at this pin, afast
interrupt sequence, provided its mask bit (F) in the CC is clear,
will beinitiated. The FIRQ has priority over the standard Interrupt
Request IRQ and isfast in the sense that it stacks only the contents
of the condition code register and the program counter. When

Fig. 1 -9. SYNC timing (courtesy of American Microsystems, Inc., and Motorola
Semiconductor Products Inc.).

21

used, the interrupt service routine should clear the source of the
interrupt before doing a-Return from Interrupt (RTI). The timing
for this interrupt is shown in Fig. 1-10A.

Interrupt Request (IRQ) Pin 3. When this line is forced
low, from some external device, the MPU will complete the in-
struction it is executing and go into the interrupt sequence. Thisis
no different than for the 6800 pP. TheIRQ has alower priority than
FIRQ, but the servicing routine should clear the source of the
interrupt before returning to the calling routine (Fig. 1-10B).

When IRQ is invoked, the contents of the index register, the
program counter, accumulators and condition code register will be
stored on the stack. The | bit in the condition code register will be
set to a 1 so that no further interrupts may occur, or at least until
this one is serviced. Asshownin Table 1-4, the MPU will nowload
the contents of FFF8;s and FFF9ysinto the program counter and
vector the program to execute the interrupt routine pointed to by
these locations. After an RTI is encountered, the MPU will return
to its initial state.

FIRQ Interrupt Timing

ADDRESS -
aus FFFF P 1 SP7 SPY FFFF FFFG FFFT FRFF NEWPC NEW
INSTRUCTION P

FETCH
Fi po 2 08Y iR i

DATA BUS|
VMR PG o PC, COR VMA NEW NEWPC JWA JSTINS
INSTRUCTION i e & N'w‘w'

————

B e e
8s —

A

3 Y b ne3 0410 el me12 ne1d nely nets 18 ne19 ne2o
F**Mm»«p«*w*mmwm»«w—u*M**Nﬁd

1RQ and NMI Interrupt Timing

o

[Sy I T oy Y OO B JA O o Ty U S Y U U o N O
ADDRESS
ous TEFF SP(P2 SP3 A SPS SP6 SP7 P8 P9 P10 5P 11 SP1Z Ferr FEEC NNIFEFO FFEF NEW PCNEW PO
" -<INSTRUCTION FFFBURQ) FFFY IRO)
oo o8V
OATABUS
s TRCTION VMK iy Foa Vi US,. REG OVREG, (X REG (X AEG OF ACCE ACCA CUR VWA NEWPCNEWNC Ve TSY
* oF nTERRUPT
SERVICE
Ry
W\ Rmvmkt
o TN
8s A N

5]

Fig. 1-10. (A) FIRQ interrupt timing. (B) TRQ and NMT interrupt timing (courtesy
of American Microsystems, Inc. and Motorola Semiconductor Products Inc.).

22

MRDY Timing

AN N A N
VA WA a———
N E J T

Fig. 1-11. MRDY timing (courtesy of American Microsystems, inc. and Motorola
Semiconductor Products Inc.).

EXTAL, XTAL Pins 38, 39. These input pins are used to
connect the on-chip oscillator to an external parallel-resonant
crystal (Fig. 1-4). The pin labeled EXTAL may be used as TTL
level input for external timing by grounding XTAL. The crystal or
external frequency is 4 times the bus frequency which is shown in
Fig. 1-4.

E, Q Pins 34, 35. Here you can see some specific
similarities between the 6800 puP and the 6809. E is similar to the
6800 bus timing signal Q2; Q is a quadrature clock signal which
leads E. Q has no parallel on the 6800. Addresses from the MPU
will be valid with the leading edge of Q. Data is latched on the
falling edge of E.

MRDY Pin 36. Thisinput control signal allows stretching of
E to extend data-access time. When MRDY is high, E will be in
normal operation. When MRDY islow, E may be stretched integral
multiples of quarter (%) bus cycles, thus alowing interface to slow
memories as shown in Figs. 1-11. A maximum stretch is 10 psec.
During non-valid memory accesses (VMA cycles), MRDY has no
effect on stretching E. This inhibits slowing the processor speed
during don't carebusaccesses.

DMA/BREQ Pin 33. The DMA/BREQ input provides a
method of suspending execution and acquiring the MPU bus for
another use. Typica uses include DMA and dynamic memory
refresh.

Transition of DMA/BREQ should occur during Q. A low level
on this pin will stop instruction execution at the end of the current
cycle. The MPU will acknowledge DMA/BREQ by setting BA and
BS to a one. The requesting device will now have up to 15 bus
cycles before the MPU retrieves the bus cycle with a leading and
trailing dead cycle.

23

ESTABLISHING A SYSTEM

Now that you have aresonable understanding of the hardware
sde of the 6809 pP, you can build a working unit. All that is
required is the 6809, some memory, power and form of display.

A typica sysem—the Motorola6809D4 unit—isdiscussedin
Appendix A. But the most important element behind the processor
is not the hardware but rather how to program it. In the next
chapter, the basic software architecture of the device will be
introduced, followed by the various addressing techniquesin Chep-
ter 3 and findly the instruction set in Chapter 4.

24

5

LAY

6809 uP Software Architecture

Software development entails the understanding of several
disciplines—specifically hardware logic as it relates to the
hardware, mathematics and general logic flow. Interestingly
enough, the software engineer doesn't really need to have an -
in-depth understanding of the electrical characteristics of the pro-
cessor he is programming, unless of course original system
software development is the goal.

However, whether the goa is system software design or
developing specific utility ware, the software architecture of the
device must be understood.

THE SOFTWARE TALE

The 6809 pP is, as stated in Chapter 1, an upward growth
device from the 6800 pP. Specifically, the 6809 adds three regis-
ters to the set available in the 6800. These include a direct page
register, the user stack pointer and a second index register. These
additional registers make the device extremely flexible, but the
6809 offers even other software features:

—Two 8-bit accumulators

—Two 16-bit index registers.

—Two 16-bit stack pointers with index capability.

—The previously mentioned programmabl e direct page regis-
ter.

—-59 instruction mnemonics (see Chapter 4).

25

—268 opcodes.

— 1464 instructions with different addressing modes.
—8x8 unsigned multiply.

— 16-bit arithmetic: load, store, add, subtract and compare.
—Powerful Push/Pull instructions.

—Powerful register transfers and exchanges.

—Powerful address-manipulation instructions.
—Extended-range long branches.

Asyou can see, the device is extremely flexible and offers the
software designer a great deal of power in a microprocessor.
Figure 2-1 is the basic programming model for the 6809 pP. You
will notice that the X and Y index registers are 16-bits wide, and
the U and S stack pointersare also 16-bits. The interesting register
is made up of two 8-bit registers, A and B, which together make up
D. It is within these three registers—accumulators—that most of
the processor's work will be done. The direct page and condition
code registers are 8-bits wide and provide programming en-
chancement that will be explained later.

The general architecture of the device supports software
techniques such as position-independent code, structured high
level-subroutined code, multi-task and multi-processor opera-
tions, development and operation of stack oriented compiler in-
structions, and the important facilities of re-entrancy and recur-
sion, both important facets of software for high-level language use

X — iNDEX REGISTER

=

Y —~ INDEX AEGISTER
POINTER REGISTERS

Y — USER STACK POINTER

S — HARDWARE STACK POINTER

P PROGRAM COUNTER

A]] ACCUMULATORS

1}

7 0
l o® J OIRECT PAGE REGISTER

nopunnnG

ju

CC — CONDITION CQOE REGISTER

Fig. 2-1. Programming model of the mlcroprocessmg unit (courtesy of American
Microsystems, Inc.).

26

or real-time data acquisition. Now that you know al of the good
things that the software architecture behind the 6809 is supposed
to provide, you are probably anxious for a more in-depth explana
tion of the programming model.

REGISTERS, POINTERS AND THINGS

Taking alook at Fig. 2-1, you can see that within the structure
there are the X and Y 16-bit index registers. These are also
referred to as the pointer registers.

The index registers are used in the indexed mode of addres-
sing. The 16-bit address in either the X and Y register is used to
point to data directly, or it may be modified by an optional constant
or register offset. The X and Y registers are equivalent in usage
and consequently support the same instructions. These registers
may be used to implement software stacks, queues and buffers.

Stack pointersU and S, shown in Fig. 2-1, can also be used as
index registers, but they serve very specific purposes in proces-
sing. The Hardware Stack Pointer (S) is used by the processor
during subroutine calls and interrupts.The difference between this
stack pointer and that onthe 6800 pP isthat it pointsto the top of
the stack rather than the next free location (Table 2-1).

The User Sack Pointer (U) isfor use by you, the programmer.
This stack pointer permits you to pass arguments to and from
subroutines with ease. This facility coupled with the hardware
stack pointer makes the 6809 pP and ideal stack processor and
enhances its functioning as -a higher level language processor.
Because the architecture of the U and S pointers are, as previously
indicated, the same asthe X and Y registers, they also support the
same instructions plus the PUSH and PULL stack controls.

The next register is the Program Counter (PC). This register
is 16-bits and is used by the processor to point to the address of the
next instruction to be executed by the processor. Relative addres-
sing is provided allowing the PC to be used like an index register in
some situations. Limited index-mode addressing is available, but
functions such as auto increment and decrement are not.

In operation, each instruction used by the processor assumes
that the PC points one location past the last byte Of the op code— as
it would after decoding the instruction. Consequently, as additional
bytes are used by the instruction, the PC always points to the next
unused byte.

The next registers, A, B and D accumulators, are made up of
two 8-bit registers as shown by Fig. 2-1. The A and B registersare

27

Table 2-1. 6809 pP Push/Pull and Interrupt Stacking Order.

FEFF
PUSH ORDER

PC 1
L

10,8 F’CH
urs,
8.5
s,
YL
6.5 \
H
XL
4.5 «

3.8 DPR)
28 B '
1.8 A

PULL FROMSTACK

0.8 CCR « TOP OF STACK
PUSH ONTO STACK

SP(or US) i l

0000

general purpose accumulators which are used for arithmetic calcu-
lations and manipulation of byte size data. What makes this pair
unique is that certain instructions concatenate A and B to form the
16-hit register D, with the contents of A being the most significant
byte.

The Direct Page register (DP) defines the most significant
(MS) byte to be used in the direct mode of addressing. The DP is
concatenated with the byte following the direct mode op code to
form a 16-bit effective address. The contents of this register
appear at the higher address output (A8-A15) during direct addres-
sing instruction execution. This permits the use of the direct mode
anywhere in memory. To maintain 6800 compatibility, dl bits are .
initialized to $00 on Reset of the processor.

CONDITION CODES ARE SPECIAL

Thefind register in the programming model of Fig. 2-1 isthe
condition code register (CC). Figure 2-2 is the format for this 8-bit

28

z
% [_ carry

| L. OVERFLOW
l__— ZERO

. SIGNFLAG

IRQ MASK

HALF CARRY

FIRQ MASK

ENTIRE STATE FLAG

Fig. 2-2. Condition code register format (courtesyAmerican Microsystems, Inc.).

register. Notice that each bit is defined and based on the
condition—toggle O or 1—which defines the operation state of the
processor and is always nice to know.

Each bit within the register performs a specific task. For
example, bits 0-3 and 5 are set as the result of instructions that
manipulate data in some way. The actual definitions of each bit
follows.

Bit 0 (C)

Bit O isthe CarryFlag, and is usually the carry from the binary
Arithmetic Logic Unit (ALU). Specifically, the C flag is generated
by the binary carry from the Most Sgnificant Bit (MSB) of the
operations (ADC, ADD). Furthermore, C is used to represent a
"borrow" from subtract-like instructions (CMP, NEG, SUB,
SBC). Only arithmetic operations affect C.

Bit 1 (V)

Bit 1 is the overflow flag and is set to a one by an operation
which causes a signed two's complement arithmetic overflow. This
overflow is detected in an operation in which the carry from the
MSB in the ALU does not match the carry from the MSB-1. Loads,
stores and logical operations set V.

Two's Complement

If you have advanced to this point in the book and aren't sure
what two's complement is, you may have a problem. | would
suggest that you obtain a copy of "Basic Microprocessor and the
6800," by Ron Bishop, Hayden Book Co., 1979. You might also
consider the Heath course on microprocessors. Both are excellent
sources for explaining this concept, which is important if you wish

29

to understand what you are doing. Should you know what two's
complement is al about but can't quite get a picture in your mind,
this note will serve to refresh your memory—no pun intended.

The two's complement is the method used to represent signed
numbers in microprocessors. Positive numbers, in this system,
use the same bit pattern for al values up to decimal +127. Nega-
tive numbers are represented as the two's complement of positive
numbers.

To find the two's complement of a number, you first take the
one's complement and then add one. The one's complement is
formed by changing al the Osto 1sand dl the 1sto Os. Invert dl the
bits. For example, the decimal number 10 is 00001010 in binary. If
the number is positive (°10), you follow this procedure.

00001010 invert 11110101 «~ one's complement
add one + 1 J_ two's complement
t

11110110 his now represents -10

l_determines the sign when set—negative
Bit 2 (2)

Bit 2 is the zero flag and is set to a one if the result of the
previous operation was identically zero. Loads, stores, logica and
arithmetic operations set Z.

Bit 3 (N)

Bit 3 isthe negative flag, which obtains exactly the MSB value
of the result of the preceding operation. Thus, a negative two's
complement result will leave N set to aone. Loads, stores, logica
and arithmetic operations dl set N. If atwo's complement overflow
occurs, the sign of the result (and the N-flag) will be incorrect.
Therefore, two's, compliment branches use the expression (N + V)
to obtain an aways valid sign result.

Bit 4 (1)

This is the Interrupt Request (IRQ) mask bit. The processor
will noi recognize interrupts from the IRQ line if thisbit isset to a
one. NMI, FIRQ, IRQ, RESET and SWI al set | to a one. How-
ever, SWI2 and SWI3 do not affect |.

Bit 5 (H)

This bit is used to indicate a carry from bit 3 in the ALU asa
result of an 8-hit addition only (ADC or ADD). This hit is used by
the DAA instruction to perform a BCD decima add adjust opera-

30

tion. The state of this flag is undefined in al subtract-like instruc-
tions.
Bit 6 (F)

This bit is associated with the Fast Interrupt Request (FIRQ).
If this bit is set, the processor will not recognize interrupts from
the FIRQ line. NMI, FIRQ, SWI and RESET dl set F to a one.
IRQ, SWI2 and SWI3 do not affect F.

Bit 7 (E)

This bit (7) is reserved for indicating the state of the ENTIRE
registers. It shows when the processor is stacked or the subset
state (PC or CC) is being stacked. E is used by the Return from
Interrupt (RTI) instruction to determine the extent of the unstack-
ing. This function allows some interrupt handling routines which
work with both fast and slow interrupts. FIRQ will clear E while
IRQ, NMI, SWI, SWI2 and SWI3 will set E before stacking. The E
bit associated with the saved registers is in the E flag position in
the CC of the stacked state.

Interrupts and the Condition Codes

When the 6809 accepts anIRQ interrupt, it will set the E flag
bit 7 and save the entire machine state. Furthermore, thel mask bit
4 will be set to blank out the present and further IRQ interrupts.
Once the interrupt is cleared, you can reset the | mask bit to permit
multiple-level IRQ interrupts. When the IRQ occurs, the F mask
bit 6 is not affected which means that an FIRQ interrupt can
supersede the current IRQ interrupt. The machine state is reco-
vered by the RTI instruction.

When an FIRQ interrupt is accepted, the E flag is cleared and
the submachine state (return address and CC) is saved. Thel and F
bits are set to mask out further interrupts. Again, | and F can be
reset to permit multiple interrupts.

6800/6809 SOFTWARE INCOMPATIBILITIES

The 6809 as designed is reasonably compatible with the 6800,
but with the added features some inconsistencies must exist.
Specifically, they are:

» The stacking order on the 6809 exchanges the order of
ACCA and ACCB. Thisalows ACCA to stack asthe MS byte of the
pair and also invalidates previous 6800 code which displayed IX or
PC from the stack.The 6809 stacks five more bytes for each NMI,
IRQ or SWI when compared to the 6800.

» The 6809 stack pointer points directly to the last item
placed on the stack rather than the location before it, as was done

31

on the 6800. Consequently, the stack pointer is initialized one
location higher on the 6809 than the 6800. Comparison values must
be one location higher.

 The 6809 uses two high-order condition code register
bits and will not apear as 1s as on the 6800.

e TheTST instruction does not affect the C flag in the 6809.
Nor do the right shifts (ASR, LSR,ROR) affect V.

 The 6809 H flag is not defined as having any particular
state after subtract-like operations (CMP, NEG, SBC, SUB). The
6800 clears this flag for these instructions.

e The CPX instruction for the 6809 functions correctly,
setting al flags in the correct manner. The 6800 sets only the
Z-flag.

e The 6809 instruction LEA may or may not affect the
Z-flag depending upon which register is being loaded. However,
LEAX and LEAY do affect the Z-flag, while LEAS and LEAU do
not. See Chapter 4. Asaresult, the User stack (U) does not exactly
emulate the index registers.

EQUIVALENCIES

Although Chapter 4 will deal with the actual instructions, the
equivalent instructions between the 6800 and 6809 are important
to know about for complete understanding of the architecture of the
device. This is especially true if you are familiar with the 6800
instruction set.

Table 2-2 lists the 6800 instructions that are not included in
the 6809. However, during assembly, the 6800 instructions are
translated in to the functional equivalents as shown. | have made no
attempt at this point to define each instruction, only to present the
equivalent.

The interrupt structure on the 6809 UP has been extensively
analyzed and improved compared to the 6800. With the 6800 pP it
was useful to execute the sequence CLI, WAI. The 6809 uP
logically-equivalent sequence-ANDCC #$EF, CWAI #$FF-
would alow an IRQ interrupt to occur after the ANDCC instruc-
tion. If thisis not desired, the 6809 instruction CWAI #$EF should
be used to replace the logically-equivalent sequence.

PERFORMANCE SUMMARY

The following cycle-by-cycle performance chart (Fig. 2-3)
illustrate the memory-access sequence corresponding to each pos-
sible instruction and addressing mode for the 6809 uP. Notice that

32

€€

oPCODE 1FETCH)

i
LONG BHAMCH 2 4 BCERED “
oerooe -
ACCA OFFSET auTo w- e w0l w-iemt] ooesoen] o oesc]
ACC8 oFFSET i MORECT
o sy owv2
Tar
oecone " oTm
e
PCOCE - OPCODE - oPCODE - 0PCODE -
|
) ' | '
TARE M OPCI0E - OPCODE - orca0E orco0E
mancn v Wi | I
< e]
. i ™ o Vil v
,' VA s i vk i s
[T S
¥ L)

STACK 1WRTE)

STACK (WRITE)

.

TOMECT 1)
WORELT (L)

A

Fig. 2-3. Address bus cycle-by-cycle
performance (courtesy of American
Microsystems, Inc.).

ve

MHEREWT PAGE
‘(-7
SEX ABZ RTS TFR X6 MuL PSHU PULL Swi E Cwal RT
D;A PSHS PULS |
e
T
i ‘
o i L
e o ’
ELLY YMa \‘l\‘M
L] N H
b e | ‘fwf,;,}ﬁ“ e Fig. 2-3. Address bus cycle-by-c_ycle
fu T SThEK p b performance (courtesy of American
e i | P ™y Microsystems, Inc.) (continued from
| osiagr L1z
STACK oy | WAITED [D i t page 33).
y STACK M | H VECTOR |
YMA H i WECTOR H
H : A : |
| 2-STALK H
A 1 i
vMi
1
I | |
I |
‘ 11 STACK
t Iz
i I
; STACE
;
Y ' L J J J l ¥ ‘

GE

NON-INHERENTS

LEA

ADCA
ADEB
ADDA
ADDB
BITA
8178
CMPR
CMPB
EORA
EORB
10A
LDB
ORA
QRS

§18
susa
SUBB

ADDR -

-

ASL
ASR

£OM
BEC

st |
sa |
NEG !
ROU
ROA

VMA
ADOR
IWRITE)

Ao0D ¢
CMPD |
cHPS
CMPY
CHPX !
oMY
SusD

ADDR -

ENG

Fig. 2-3. Address bus cycle-by-cycle
performance (courtesy of American
Microsystems, Inc.) (continued from
page 34).

Table 2-2. Equivalent Instructions

(courtesy of Motorola Semiconductor Products Inc.).

6800 Instruction

ABA
CBA
CLC
CLI
CLvV
CPX
DES
DEX
INS
INX
LDAA
LDAB
ORAA
ORAB
PSHA
PSHB
PULA
PULB
SBA
SEC
SElI
SEV
STAA
STAB
TAB
TAP
TBA
TPA
TSX
TXS
WAI

6809 Equivalent

PSHS B; ADDA ,S +
PSHS B; CMPA ,S +
ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
CMPX P
LEAS-1,5S
LEAX -1,X
LEAS 1,-S
LEAX 1X

LDA

LDB

ORA

ORB

PSHS A

PSHS B

PULS A

PULS B

PSHS B; SUBA ,S+
ORCC #$01
ORCC #$10
ORCC #$02
STA

STB
TFRA,B;TSTA
TFR A,CC

TFR B,A; TST A
TFR CCA

TFR SX

TFR X,S

CWAI #$FF

each instruction begins with an opcode fetch. While that opcode is
being internally decoded, the next program byte is fetched—the
so-called pipelining effect. Since most instructions will use the next
byte, this considerably speeds processor throughput. You will find
in tracing the operation that each opcode will follow the chart, and
VMA is an indication of FFFF s on the address bus, R/W =1 and
BS = 0. Although this chart méy appear out of place at this time, it
is my hope that it will help reinforce the architectural design of the
processor and ease your understanding of addressing and the in-

struction set.

36

?“:'“'“’“;

LA

Addressing Modes

Thefirg two chaptersof thisbook wereto get you into the swing of
things and hopefully spark your interest in the 68091. This chapter
is designed to build upon the power that | have hinted lies within
the miniscule dot of slicon. Therefore, let's dig in.

You probably redlize that the true power of ay computer,
regardless of size, isits ability to access memory. The addressing
modesthat the designersbuild in provide that capability. Withinthe
6809 P, the addressing modes make it possible to extend the
basicinstruction set (59 instructions) to over 14 64. This statement
in itself should tell you that a lot of power is possible.

BASIC CONCEPTS

This chapter is about addressng—what it is, how it works,
and what modes and/or functions you have available with the 6809.
In order to do this, however, it is necessary to lay down some
ground rules to assist in the understanding of the subject. Con+
sequently, rather than develop some odd-bdl method. | have opted
to use the same terms and definitions that Motorola prescribes.

Therefore, in the folowing descriptions the term effective
address(EA) isused. The EA istheaddressin memory from which
the argument for an instruction isfetched or stored. Intwo operand
instructions, such asadd to accumulator (ADD), one of the effec-
tive operandsisused asapointer. (The accumulator isinherent and
not considered an addressing mode per se').

37

The following several pages provide descriptions and exam-
ples of the various modes of addressing the 6809 pP. To insure that
understanding is achieved, | have provided examples for each
mode and in some, but not all, cases the example is described in
detail. Within these examples, you will see assembler instructions
(described in Chapter 5) which should not be confused with an
instruction set mnemonic. Specifically, | will be using the assem-
blerinstructions ORG, EQU and FCB. AsdoesMaotorola, | will use
the parentheses in the examples to indicate "the contents of the
location or resistor referred to. For example, (PC) indicates the
contents of the location pointed to by the PC (Program Counter).
The colon (¢) is used to indicate a concatenation of bytes.

Furthermore, for convenience of description, it will be under-
stood that the PC points one byte past the last byte of the instruc-
tion op code at the beginning of instruction execution. Other
descriptive notation used throughout this book and Motorola and
AMI documentation are shown in Tables 3-1, 3-2 and 3-3.

To fully appreciate this chapter, and to use it, | recommend
that you look at the programmer's card located in Appendix C. This
card will assist you in making the connection between the addres-
sing mode and the instruction.

Before getting into the real meat of the matter, hereis arun
down of the types of addressing modes that will be discussed:
inherent (includes accumulator), immediate, extended indirect, di-
rect, register, indexed, zer o-offset, constant offset, accumulator offset,
auto increment/decrement, indexed indirect, relative, short/longre-
lative branching and program counter relative addressing.

INHERENT ADDRESSING MODE
This mode of addressing has no effective address (EA). The
opcode of the instruction contains al the address information

Table 3-1. Register Addressing Notation
(courtesy of Motorola Semiconductor Products Inc.).

Accumulator ACCA or ACCB (A OR B)
Double Accumulator ACCA:ACCB or ACCD(D)
Index Register IXorlY (XorY)

Stack Register SP or US (S or U)
Program Counter PC (PC)

Direct Page Register DPR (DP)

Condition Code Register CCR (CC)

The Longer-form notation (i.e, ACCA, ACCB.ACCD, IX, IY,SP,US, PC, DPR,
CCR) is used to describe the MPU resisters.The short-form notation (i.e.,A,B,
D, X,Y, S, U, PC, DP, CC) is used by the 6809 assembler that is discussed Iater.J

38

Accumulator Table 3-2. Register Addressing Modes
Double-Accumulator (courtesy of Motorola Semiconductor
Inherent Products Inc.).

necessary. Inherent addressing instructions are the only type
which do not include information in the operand field. Included in
inherent addressing are : ABX, DAA, SWI, ASRA and CLRB.

Assembly Example

0500 5F CLRB

0501 3F Swi

In Table 3-4 accumulator B is cleared (filled with 00000000) and the
processor in interrupted.

IMMEDIATE ADDRESSING

In immediate addressing, the EA of the data is the location
immediately following the opcode. In other words, the data to be
used in the instruction immediately follows the opcode of the
instruction. The 6809 uP uses both 8 and 16-bit immediate values,
depending on the size of argument specified by the opcode. Of
course, immediate addressing implies that the data is a known
value as the program is being created.

PC+1——+ PC
EA = PC
PC+1 —————» PC

Table 3-3. Memory Addressing Notations
(courtesy of Motorola Semiconductor Products Inc.).

Ay
() = The (8-hit) data pointed to by the enclosed (16-bit) address. .
EA = The Effective Address; a pointer into memory created as a result of an addressing mode.
M = (EA) = The data in the address space (MEMORY") pointed to by the effective address.
Mi = Memory Immediate Addressing; the data immediately following the last byte ot the OP code.
dd = 8-hit. Offset, (or a relative distance to a label which evaluates to 8-bits).
DDDD = 16-hit Offset (or a relative distance to a label).
P = Immediate, Direct, Indexed, Extended.
Q = Accumulator, Direct, indexed, Extended.
YYYY = Offset such that - 64K <=YYYY <= 64K.
yv4 = Any indexable register (IX, 1Y, SP, or US)
XX = 8-hit hex value.
* = PC at start of present instruction
* = Start of next instruction.
IN = Indexed Addressing only
= Immediate Addressing Bytes(s) Follow(s).
$ = Hex Value Follows.
% =Binary Value Follows.
< = Before indexing: force one-byte offset form (for known forward reference, or before
absolute address; force direct addressing (obtain warning If SETDP - M5 byte value
> = Before absolute address; force extended addressing.
, = Indexing symbol.
[1 = Indirection.

39

Table 3-4. Accumulator B Is Clesred and the Processor |s Interrupted.

Befora Completon

e b : 0500 I peososo
£ oson ! ! } ':';5'52?"%”

Attar Complation

I 0501 ! Now PG 1

R e e ! 0501
3F (v — = —]
| Interrupt] e, o o o

Assembly Examples

0500 8620 LDA#$20 ;$# dgnifies immediate
addressing

0502 8E FOOO LDX #$FO00 ; $ signifies hexidecimal vaue

0505 1041 LDY #$41

In the following example, the program says load the A ac-
cumulator with the value F8, which is the value immediately
following the opcode (Fig. 3-1).

EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes im-
mediately following the opcode fully specify the 16-bit EA used by
the instruction. The address generated by an extended instruction
defines an absolute address and is not position independent. This
addressing mode references any location available in the memory
space. Extended addressing mode instructions are 3-bytes long,
opcode and two-byte address.

PC + 1 - PC
EA = (PC) : (PC + 1)
PC + 2 4= PC

40

BEFORE COMPLETION
A

[e
STEPS TO DETERMINE
PREVIOUS VALUE{ gppecTIVE ADDRESS
pC
LDA »$F8 O05BE 86 - OSBE PC=$05BE
PC=PC + 1=$05BF

058F 8 EA=PC
NEW PC=PC +1
osco =$05C0
S
AFTER COMPLETION
INSTRUCTION COMPLETE
e
A A=(EA)=$F8
NEW PC=$05CO
-
05BE 36 i
05BF F8 — NEW PC
05CQ R— 05CO
L

Fig. 3-1. immediate addressing mode example (courtesy of Motorola Semicon-
ductor Products Inc.).

Assembly Example

43A0 A PG EQU $43A0
1000 B6 43A0 LDA A APG

In the following example, the program contains an instruction
to load the accumulator with DOG. For this example, DOG is equal
to the contents of memory location 06E5, which is the result of
adding the concatenated two bytes following the opcode byte to
$0000 (Fig. 3-2).

As a special case of indexed addressing, one level of indirec-
tion may be added to extended addressing. Inextendedindirect, the
two bytes following the postbyte of an indexed instruction contain
the address of the data.

DIRECT ADDRESSING

The EA of adirect mode instruction is the contents of the next
byte of the opcode as a one-byte pointer into a single 256-byte
"page" of memory. (Page is used to mean one of the 256 possible
combinations of the high-order address bits). The page in use is
fixed by loading the Direct Page Register with the desired high-
order byte—by transferring from or exchanging with another re-

41

gister. As aresult, the EA consists of a high-order byte, from the
DP register, catenated with a low-order byte from the instruction.
The direct addressing mode for the 6809 pP is directly compatible
to that of the 6800 pP.
EA = DPR: (PC)

Assembly Examples
0500 96 30 LDA $20
0502 10 SETDP $10
0505 D6 1030 LDB $1030

Several things are shown here. First, this mode requires less
memory and executes faster than extended addressing. Of course,
only 256 location (one page) can be accessed without redefining the
contents of the DP register. Indirection is not allowed with this
addressing mode. The next thing demonstrated is SETDP—Set
Direct Page Pointer.

This directive is used by the assembler. It causes the assem-
bler's 8-bit direct page pointer to be set to the value in the operand
field—in this case a hex 10. This pointer is used when the assem-

BEFORE COMPLETION

STEPS TO DETERMINE

A
PREVIOUS VALUE| EFFECTIVE ADDRESS

Pc PC=$0409

LDA DOG 0409 B6 -~ l 0409 PC=PC + 1=$040A
EA=(PC):(PC+1)
040A 06 S06E5 ~$06E5
NEW PC=PC+2=$040C
040B E5
o040c! .
! i
! |
! '
DOG FCB $40 oegsL - 40 ; EA[06E5 J

AFTER COMPLETION

INSTRUCTION COMPLETE

A=(EA)=$40
LDA DOG 0409 B6 NEW PC=$040C
040A 06
0408 E5 NEW PC
040C ’ <——~r 040C J

1

1 j

] 1]

L 1

+ 1
DOG FCB $40 06E5[40 —}——r 40 I

Fig. 3-2. Extended addressing mode example (courtesy of Motorola Semicon-
ductor Products Inc.).

42

bler must decide whether to select the extended or direct mode of
addressing. If the high or most significant (MS) byte of the EA is
equal to the assembler's current direct page pointer, the direct
mode is chosen. Otherwise, the extended mode is selected. The
value in the operand field of the SETDP directive must be |less than
or equal to $FF.

In the following example of the Direct Addressing Mode the
program contains an instruction to load the accumulator with CAT.
For this example, CAT isequa to the contents of memory location
004B, which is the result of adding the byte following the opcode
byte to $0000. Notice that this exampleis the same examplethat is
used for explaining direct addressing for any of the 68XX family of
processors, thus implying strict compatibility (Fig. 3-3).

REGISTER ADDRESSING

Register addressing implies no magic but merely references
the selection of various on-board registers. Some of the opcodes
are followed by a byte that defines a register or set of registersto
be used by the instruction, which is called a postbyte (Table 3-5).

Examples

TFR X, Y Transfers X into Y
EXG A, B Exchanges A with B
PSHS A, B, X, Y Push onto S Y X, B then A
PULU X,Y, D Pull from U D,X, then' Y

In the following assembly example, the REG—reqgister
directive—is used to define specific registers for specific labels.
See Chapter 5. The registers are then pushed and pulled from the
stack in the order that is characteristic of the 6809 uP. See Table
2-1.

Assembly Example

000F DOG REG A,B,XX,DP
0070 CAT REG SX,Y
0070 FROG REG UX,Y

0000 36 70 PSHU #CAT

0002 35 70 PULS #FROG

0004 34 OF PSHS #DOG

The interesting thing about this example, used courtesy of
Motorola, is that a label assigned a value using the REG directive
which contains the U register may not be used with the PSHU

43

CAT

CAT

BEFORE COMPLETION

i

STEPS TO DETERMINE
A EFFECTIVE ADDRESS
FCB $20 004B 20 PREVIOUS
VALUE PC=$052D
PC PC=PC+1=$052E
P EA=(PC)=$4B+$0000
LDA CAT 052D| D6 — L 520] SO
052E 4B et NEW PC=PC +1
=$052F
052F
.
AFTER COMPLETION
e
A
FCB $20 0048 20] 20 |
INSTRUCTION COMPLETE
A=(EA)=$20
LDA CAT o052D] D NEW PC=$052F
0528 48 NEW PC
052F < [052F 1
[

Fig. 3-3. Direct addressing mode example (courtesy of Motorola Semiconduc-
tor Products Inc.).

ingtruction. Similarly, avalue formed using the S register may not
be used with PSHS instruction. The assembler will flag either of
these forms with an error message.

INDEXED ADDRESSING

Indl indexed addressing one of the pointer registers(X, Y, U,

S and sometimes PC) is used in a cdculation of the effective
address (EA) of the operand to be used by the ingtruction. Five

Table 3-5. Push/Pull Postbyte (courtesy of American Microsystems, Inc.).

Push/Pull Postbyte

~ PULL ORDER PUSH ORDER ~

PC V] Y X DP B A CcC PSHS/PULS
FFFF — INCREASING MEMORY ADDRESS — 0000
PC S Y X DP B A cc PSHU/PULU

44

basic types of indexing are available and are included in this
discussion. The postbyte of an indexed instruction specifies the
basic type and variation of the addressing mode as well as the
pointer register to be used. Table 3-6 lists the legal formats for the
postbyte. Table 3-7 gives the assembler form and the number of
cycles and bytes added to the basic values for indexed addressing
for each variation. As a result of processor compatibility, most
6800 P index mode instructions will map into an equivalent two
bytes on the 6809 pP.

Zeao-Offsst Indexed

This option allows selection of auto increment/decrement by
one or two bits; it is a minimum two-byte instruction (opcode +
postbyte). When in this mode, the selected pointer register con-
tains the EA of the data to be used by the instruction. This is the
fastest indexing mode.

Examples
LDD 0,X,
LDA 0,S

Congant Offsgt Indexed

When this mode of addressing is used, a two's complement,
offset and the contents of one of the pointer registers are added to
form the effective address (EA) of the operand. The pointer regis-
ter's initial content is unchanged by the addition. Three sizes of
offset are available.

+4-bit (-16 to +15)
+7-bit (-128 to +127)
+15-bit (-32768 to +32767)

Constant offset, +4 bits, use bit 4 of the postbyte as a sign bit
and bits 0 through 3 as a constant offset. It is a minimum two-byte
instruction.

Constant offset, + 7 bits, designates the byte after the post-
byte as a two's complement offset. It is a minimum three-byte
instruction—opcode + postbyte + offset.

Constant offset, + 15 bits, specifies the two bytes following
the postbyte to be two's complement offset. It is a minimum
four-byte instruction—opcode + postbyte + two-byte offset.

Other options are the two's complement 5-bit offset that is
included in the postbyte and is most efficient in use of bytes and
cycles. The two's complement 8-bit offset is contained in a single

45

Table 3-6. Indexed Addressing Postbyte Register

Bit Assignments (courtesy of American Microsystems, Inc.).

Bit Assignments

POST-BYTE REGISTER BIT INDEXED
ADDRESSING
71615141 312(1{0 MODE
0| R| R{ X} X| X{ X| X| ea= ,R+4-BIT OFFSET
1{R| R 0] 0]0]O}O R+
1|RIR|1|0}{0] 0|1 R+ +
1| R{R[O]Ol0O]1]|0 R
1 RIR{I]|]O] 0] 1] 1 -R
1/R{ R 1}0Oj1}]0]0 EA = R+0 OFFSET
1| R R{ i{ 0| 1| 0| 1| EA=,R+tACCB OFFSET
1| R| R 11 0| 1| 1} O] EA= ,R+tACCA OFFSET
—lﬁkR R/ 1] 11 0] 0| Ol EA=,B+7-BIT OFFSET
1| R R{ 11 1[0} 0| 1|EA=,6R+15-BIT OFFSET
T RIRjF{1] 0] 1]1 EA = ,R+D OFFSET
11 Xt X| 1] 11 0] 1|EA=PC=+7-BIT OFFSET
1| X| Xt t{ 1| 1| 0| 1(EA=PC+15BIT OFFSET
1R Rl 1]t 1| 1)1 EA = ,ADDRESS
e e e e
[l—ADDRESSING MODE FIELD
INDIRECT FIELD
SIGN BIT WHEN B7 =0
REGISTER FIELD

00:R =X
01:R=Y
10R=U
1I.R=S

X =DONT CARE

byte following the postbyte, and the two's complement 16-hit
offstis in the two-bytes following the postbyte. Asaprogrammer
you will normally not worry about the offset, since the assembler
should take it into account.

Examples
LDA 23X
LDX 2,S
LDY 300X

46

Example of constant-offset indexed indirect

LDA [, X] (note: the brackets indicate indirection)
LDB [0,Y]
LDX [64000,S]

Constant offset indexed indirect addressing functions in two
stages like al indirects. First, the indexed address is formed by
temporarily adding the offset-value contained in the addressing
byte(s) to the value from the selected pointer register (X,Y,S,U, or
PC). Then this address is used to recover a two-byte absolute
pointer which is used as the EA.

The following example of the indexed addressing mode with a
16-hit offset contains an instruction to load the accumulator with a
tabular value containing the hexadecimal number $DB (Fig. 3-4).
This value is located in memory location 0780, which is the result
of adding the concatenated two bytes following the opcode byte to
the contents of the index register. Take out your programmer's
calculator and add up the values to see what you get. From Fig. 3-4
you can see that this mode allows the programmer to use a "table of
pointer" data structures, or to do 1/O through absolute values
stored on the stack.

Accumulator-Offset Indexed

When this option is chosen, it designates the A, B or D
register as two's complement offset. The instruction is a minimum

Table 3-7. indexed Addressing Modes (courtesy of American Microsystems, Inc.}.

Non Indirect Indirect
Assembler postoyte | 5| Assembler Postbyte § +§ *
Type Forms Form OpCode f§ ~f# Form oP Code § =f#
Constant, Offset Frorm R No Otiset R 1RR00100 § 0f 0 Rl 1RR10100 | 300
(Signed Offsets)
58t Offset n.R oRRnnnnn | 1 0 default to 8 bit
8 Bit Offset n.R 1rro1000 | 1| 1§ MR 1RR11000 | 4 1
16-Bit Offset n,R 1RR01001 | 4§ 2 n.R] * 1RR11001 72
Accumulator Offset from R A — Register Offset AR 1RR00110 § 0] [AR] 1RR10110 § 4}o0
(Signed Offset)
) B — Register Offset BR 1rroo10l | 1§o} @BR 1RR10101 § 4f0
D — Register Offset D.R 1RRO1011 | 4]0 DRI 1RR11011 | 7}0
Auto Increment/Decrement R Increment By 1 R+ 1RR00000 230 not allowed
Increment By 2 R++ 1rro0001 § 3Jo} R+ 1RR10001 6fo
Decrement By 1 -R 1RrR00010 | 2f0 not allowed
Decrement By 2 --R 1rroo011 | 3fo] g 1RR10011 | 6§ 0
Constant Offset From PC 8-Bit Offset n,PCR 1xx01100 | 1f1f [n.PCR] 1Xx11100 § 4% 1
16-Bit Offset n,PCR 1xx01101 | 5{2] [n,PCR] 1xx11101 | 8f2
Extended indirect 16 Bit Address - - -1 n] 10011111) s5§2
* + and -, indicate the number or additional cycles and bytes for the particular variation ReX, Y. Uor 8 X = 00 v =01
. X=Don't Care U=10 s=11

47

BEFORE COMPLETION
e
PC
STEPS TO DETERMINE
LDA TABL. X 0692 "6 D 0692 EFFECTIVE ADDRESS
0693 07 o77E
0894 7E X PC=$0692
| ' 2 PC=PC+1=$0693
"—‘m“j' EA=(PC):(PC+1)+(X)
TABL FCB $BF o77E BF A =$077E+$02
=$0780
FCB $DB 0780 DB ¢ =$0695
FOB $CF o781 cF
I ADDER
EA 0780
AFTER_COMPLETION
X
LDA TABL X 0592 A6 02 l
0693 o7 INSTRUCTION COMPLETE
A=(EA)=$DB
0694 e NEW PC NEW PC=$0695
0695 - 0595
' \
TABL FCB SGF 077E 8F
FCB $86 007F 36 A
FCB $CF 0781 cF
—_—

Fig. 3-4. Indexed addressing, mode, 16-bit offset example (courtesy of Motorola
Semiconductor Products, Inc.).

of two-bytes. However, in dl cases the offsgt is temporarily added
to the contents of the selected pointer register to form an EA.

Thismode is Smilar to congtant offsst indexed except that the
two's complement valuein one of the accumulators (A, B, or D), ad
the content of one of the pointer registers, are added for the EA as
stated earlier. It is important to redlize that when this process
takes place, neither the contents of the accumulator or the pointer
register are changed as aresult of the addition. Furthermore, the
postbyte specifies which accumulator to use as an offset. No addi-
tiond bytes are required. The vaue of using an accumulator offst
is that the vaue of the offset can be caculated by a program at
run-time, thus relieving the programmer.

Examples

LDA AX
LDA BY
LDA DU

48

Accumulator-indexed indirect addressing uses an ac-
cumulator (A,B or D) as a two's complement offset which is tem-
porarily added to the value from the selected pointer register
(X,)Y,S, or U). The resulting pointer is then used to recover
another pointer from memory —the indirect notation—which is
then used as the EA.

Auto I ncrement/Decrement Indexed

When the auto increment addressing mode is chosen, the
pointer register contains the address of the operand. After the
pointer register is used, it is incremented by one or two. This
mode is extremely useful when you want to step through tablés,
move data or create software stacks. Conversely, the auto decre-
ment mode suggests that the pointer register be decremented
prior to its use as the pointer to the address of the data. This mode
isvery similar in operation to the increment mode, but everything
is backwards. For example, tables would be scanned from the high
to low addresses.

Asindicated, the increment or decrement can be one or two to
al for 8 or 16-bit tables. Of course, the step is programmer
selectable. Because the decisions can be made before run-time,
the programmer can establish additional software stacks that are
identical to the U and S stacks.

Examples

LDA X LDX , X+ +
LDA , Y+ LDX Y ++
LDA ,S+ LDX ,U++
LDA ,U+ LDX , St +

Notice that the value in the selected pointer register addres-
ses aone or two byte valuein memory. No offset is permitted in
this mode.

Example

LDA [X+ +]
LDB [Y ++]
LDD [,S+ +]
LDX [,U++]

This mode references auto-increment indirect. It uses the
value in the selected pointer register (X,Y,S or U) to recover an
address value from memory. This value is used as the EA. The
register is then incremented by two (+ +)—incrementing by one
in the indirect mode is illegal and no offset is permitted.

49

Example
LDA ,-X LDX ,--X
LDA ,-Y LDX ,--Y
LDA ,-U LDX ,--U
LDA ,-SLDX ,--S
In the auto-decrement addressing mode, the selected pointer
register (X, Y,Sor U) isdecremented by one (-) or two (--) ad is
user selectable. The resulting value then becomes the EA.

Example

LDA [,--X]
LDB [,--Y]
LDD [,--U]
LDX [,--S]

Auto-decrement indirect first decrements the selected
pointer register by two (--). An auto-decrement of one is prohi-
bited. The resulting value is used to recover a pointer vaue from
memory and is the EA.

INDEXED INDIRECT

With the exception of the + 4-bit congtant offset and the
auto-increment/decrement by one, dl indexed addressing modes
may be used with an additiond leve of indirection. The address
formed by adding the offset to the selected pointer register desig-
nates alocation containing the EA of the operand data. Bit 4 of the
postbyte is used to select the indexed indirect mode. Interestingly
enough, this same bit (bit 4) is used as a Sgn hit in the + 4-bit
congtant offsst mode. Regardless of indexing mode direct or indi-
rect, the same number of bytes are used.

In this indirect mode, the EA is contained a the location
specified by the content of the index register plus any offsat. Inthe
falowing example, the A accumulator is loaded indirectly using an
EA cdculated from the index register and an offst. It isreprinted
courtesy of Motorola.

Example
Before execution
A AA = XX (dont care)
v X =$F000
$0100 LDA 10X EA is now$F010
$F010 $F1 F150 is now the new EA
$F011 $50Q
$F150 $AA After Execution

A AA=FAA Actud Data Loaded

50

RELATIVE ADDRESSING

Relative addressing involves adding a signed constant to the
contents of the program counter. When this mode is used in
conjunction with a branch instruction, the sum becomes the new
PC content if the branch is taken; if not the PC merely advances to
the next instruction. For example, the bytes following the branch
opcode are treated as a signed offset which is added to the program
counter. All of memory can be reached in long relative addressing
as an EA is interpreted modulo 2'°. The following example is
reprinted courtesy of American Microsystems, Inc. (AMI).
Example

BEQ CAT (short)
BGT DOG (short)
CAT LBEQ RAT (long)
DOG LBGT RABBIT (long)
RAT NOP
RABBIT NOP

According to Motorola and AMI, relative addressing differs
from that contained in the 6800 pP due to two important additions.
Thefirst of these is that the offset—signed constant—can be either
+ 7 bitsor = 15 bitsin length. This feature permits the program to
branch to any location in memory.

The second most important addition is that the relative mode
isno longer limited to branch instructions. An EA which retainsthe
position-independent nature of relative addressing may be formed
by adding a + 7-bit or + 15-bit offset to the program counter. Doing
this in-effect is an indexed addressing mode with one or two
specific postbytes. The examples are reprinted courtesy of Ameri-
can Microsystems, Inc.

Examples
2015 LDA -$3E,PC 2018 LDA $211F,PC
2015 OPCODE 2018 OPCODE
2016 [8C] POSTBYTE 2019 POSTBYTE
2017[c2] OFFSET 201A OFFSET(MSB)
2018 1INEXT INST 201B OFFSET (LSB)
1FDA[01 J\INEW 201C NEXT INST
1FDBJ00 }{EA 413B NEW
0100 IDATA 413C EA

0300 DATA

Note: the offset is added to the new value of the PC.

51

Table 3-8. 8-Bit Accumulator and Memory
Instructions (courtesy of American Microsystems, Inc.).

AddressingModes
8 3 3
8-Bit Accumulator and Memory Instructions 5 £ £
o = £ E
operaion HEHE R AR
ADCA, ADCB Add memory to accumulator with carry —1 X X X X X X X X
ADDA, ADDB Add memory to accumulator —1 X X| X| X X1 X X X
ANDA, ANDB™ | And memory with accumulator X XTI XTXT XT X X X
ASL Arithmetic shift left memory location T T XTI XT XTI X X| x| x
ASLA, ASLB | Arithmetic shift left accumulator X — | —=— [—. —— —
ASR Arithmetic shift right memory location —[=)Q' X1 X
ASRA, ASRB Arithmetic shift right accumulator — [=
BITA, BITB Bit test memory with accumulator — I X rX X1 X
CLR Clear memory location _] _l X X X['X
CLRA, CLRB Clear accumulator X — — — | 1=
CMPA, CMPB | Compare memory with accumulator — 1 X X[X[X] X
com Complement memory location — | =1 X] x[X] x
COMA, COMB | Complement accumulator X — — — —
DAA Decimal adjust A-accumulator X — = M= — —
DEC Decrement memory location =T X XT XT X XTI X[x
DECA. DECB Decrement accumulator X =] =T =1T=| = =71 =1 =
EORA. EORB Exclusive or memory with accumulator — | X X X X X X X X
EXG RL, R2 Exchange R1 with Rs (R1. R2 = A, B, CC, DP) X — jiy I S
INC Increment memory location 1 — rx X L X XX X [X]
INCA, INCB Increment accumulator X = = /= e =
LDA, LDB Load accumulator from memory — X l X| XT X| X] X | X | X]
LsL Logical shift left memory location X [=1 XTX I;x X Ll(* X [)(J
LSLA, LSLB Logical shift left accumulator X = L 1= =
LSR Logical shift right memory location — | — & X L?L X {L X1 X1}
LSRA, LSRB Logical shift right accumulator X —_— —_— e T —
MUL Unsigned multiply (AXB=D) Xi—]] [—H— = —
NEG Negate memory location — 1 — Li X (_x- X XX { X f
NEGA. NEGB | Negate Accumulator X —] == = —
ORA, ORB Or memory with accumulator —| X | X X l X | X | X1 X ‘ X I
ROL Rotate memory location left — _] X] X & X Lix L xJ
ROLA. ROLB Rotate accumulator left X = 1 —1- =
ROR Rotate memory location right T X XX XX
RORA, RORB | Rotate accumulator right X — — — = —
SBCA, SBCB | Subtract memory from accumulator with borrow — I X X[XTI X xX[X
STA, STB Store accumulator to memory — = XT X X[X] X
SUBA, SUBB Subtract memory from accumulator —1 X X X X X X
TST Test memory location — | —7 x| x| x| x| X
TSTA, TSTB Test accumulator X | —] =] = =1 =1 —
TFR,R1, R2 Transfer R1 to R2 (R1, R2 = A. B. CC. DP) X |] =T =T ——

NOTE: A and 8 may be pushed to (pulled from) either stack with PSHs. PSHU (PULS. PULU) instructions.

Relative Indirect

Thismode in actud use is indexed with the PC being used as
theindex register or in concert with the primeregister. Oneor two
bytes past the postbyte are used to provide a = 7 bit or + 15 hit
offsat. Theresulting Sgned number isthen added to the contents of
the PC, which then forms a pointer to consecutive locations in
memory that contain the new EA. This example is courtesy of
American Microsystems, Inc.

52

Table 3-9. 16-Bit Accumulator and Memory
Instructions (courtesy of American Microsystems, Inc.).

5ddressmg Modes
g 3 5
16-Bit Accumulator and Memory Instructions ° é’ %
@ > £
s| 8 |El 8|33 |e]e
2 5] £ S| R X|E |8
- e - 22|l 8|le)ls|=
Mnomonic(s) Operation - } E i‘ o) G| d S‘l/s | @
ADDD Add memory to D accumulator XX X X 1'XT X1 x1
CMPD Compare memory with D accumulator =1 X 7)(T X, X X X
EXG D,R Exchange D with X, Y S. U, or PC 5 X|] —— — — 1 — =
LDD Load D accumulator from memory — | X| X L_x X| X| X
SEX Sign Extend X R g — — _
ST Store D accumulator to memory L—1 = X i X Xi X| X
SUBD Subtract memory from D accumulator — X X] X X X X
TR DR Transfer Dto X. Y, S, U. or PC X]| —— — —1 -
TFRR,D __ Transfer X. Y. S, U, or PC to D X ——= = JE
Example
2015 LDA -$3E,PC 2018 LDA $2115,PC
2015 A6 OPCODE 2018 A6 OPCODE
2016 9C POSTBYTE 2019 9D POSTBYTE
2017 C2 OFFSET 201A 21 OFFSET (MSB)
2018 NEXT INST 201B 1F OFFSET (LSB)
201C NEXT INST
1FDA 01 NEW 413B 03 NEW
1FDB 00 EA 413C 00 EA
0100 DATA 0300 DATA
Table 3-10. Index Register/Stack Pointer
Instructions (courtesy of American Microsystems, Inc.).
Addressing Modes .
index Register/Stack Pointer Instructions B £ 5
] - £ £
B % E-EE-EE Tlels
s|E|EBle|e|g|8i5]%8
Mnemonic(s) ~ Operation ElElSI{Sld{Elsl&] &
CMPS. CMPU Compare memory with stack pointer X X1 X[x{ XTI X[X] X
CMPX. CMPY Compare memory with index register | —{ X X[X]x X[X]| X]| X
Exchange D, X, Y, S, U, or PC with — —
BGRLRZ b X'V s U or,C —|—i— —|—
LEAS _ LEAU Load eftectfve address into stack pointer — | — | = — | X[X]| X| X] X
LEAX. LEAY Load effective address into index register — | - —]—| X[X X X | X
LDS, LDU Load slack pointer from memory — | X} X XXX X] XX
LDX, LDV Load index register trom memory — I X XXX] X] X]| X] X
PSHS Push any register(s) onto hardware stack (except S)y X | — e — | —
PSHU Push any register(s) onto user stack (except U)_'____X ol R — —
PULS Pull any register(s) trom hardware stack (except S)| X [— — — —{— 1]
PULU Pull any register(s) from hardware stack (except U)| X [— | — [— |— | — —
STS, STU Store stack pointer to memory —] — | X | X X | X[X
STX, STY Store index register to memory — 1= X] X] X1 X T
TFR R1,R2 Transfer D, X, U. or PC to 0, X, S, U, or PC _X — | —] — _ | — —
ABX Add B-accumulator to X (unsigned) X| —]—=1— | — L—

Table 3-11. Branch Instructions (courtesy of American Microsystems, Inc.).

Addressing Modes
T
g 3 g
Branch Instructions =] =
2 = = £
sl 2] | E1Elg]slels
&8 5{ 2t 2 S 21E B
—— B E| 22|22l =
Mnemonic(s) Operation FE E a | G| & £ | x Ln:
L - — _— T L. Pt il 4.
BCC. LBCC Branch if carry clear __‘ - - — = = — X { -
BCS. LBCS Branch if carry set - — — X | —
b — —
BEQ. LBEQ Branch if equal N I - X .
BGE. LBGE Branch if greater than or equal (signed) i - =1 - j - 7_XR7 T
BGT. LBGT Branch if greater (signed) ’»w - = — — — X | -
=2 = SN SR B S S S R
BHI. LBHI Branch if higher (unsigned) ;j PN Gy G T X
LBHS. LBHS Branch if higher or same (unsigned) bl Wil Pl Mot Mgt il Wi X | —
| BLE _LBLE _ Branch if less than or equal (signed)_ —| =1 = - — — - X | —
| "BLO.1BLO Branch i lower (unsigned) };_ — | —| = — [p— X | =
BLS. LBLS Branch if lower or same (unsigned] [N ey g j_{ - =1 — X[—
BLT. LBLT Branch if less than (signed) — - —| - [[X | —
BMI. LBMI Branch if minus [= =] =1 — | =1 =] <] x| =
- BNE. LBNE Branch if not equal - -] =] -] -1 =1~ X | —
BPL. LBPL Branch if plus — | -] - =1 =1 =1 - X | —
BRA. LBRA Branch always — | =T -7 =1—=1-=1- X | —
L BN IS - : :]__
BRN. LBRN Branch never (3.5 Cycle NOP) | =l =]l =l -i-1=-1= —
BSR. LBSR Branch to subroutine — -] = =7 -1 = - X | —
BVC. LBVC Branch if overflow clear }‘1 — | -] -] =] - § — X | —
BVS. LBVS Branch if overllow set Y S Y L pE N X | —

Extended Indirect

Thisis another option of indexed indirect addressing. For the
extended mode, two bytes fallowing the postbyte are used as a
pointer to consecutive locations in memory which contain the new
effective address. The exampleis courtesy of American Microsys-
tems, Inc.

Example

201C LDA c200
201C | A6 | OPCODE
201D oF | POSTBYTE

201E C2
201F 00 POINTER
2020 NEXT INST

c200 [00} NEwW
c201 [80 EA
0080 DATA

Absolute Indirect

The processor must have some method of restarting and
handling interrupt vectors. Thisaddressing modeisexclusively for
that purpose and no other. The conditions are serviced by fetching
the contents of exact memory locations and loading it into the PC.
Nathing more and nothing less happens.

54

Table 3-12. Miscellaneous Instructions (courtesy of American Microsystems, Inc.).

Addressing Modes

—
—

’ i g =] =]
" . = 3 3
Miscellaneous Instructions 2 = =
] - E £
sl sl .|| |%81%8|8¢
= | 8 8| 8|83 |3!/%| 8
I " " £ El =21 0% Si2leisl s
Mnemonic(s) Operation] = = =] w [in] £ = = @
ANDCC AND condition code register = —] -} =] =1 =] =1 —
CWA AND condition code register, Then wait for interrupt { — X — — — — — }d——“ —

| A . L]
NOP No operation X =~ =1=1=1-T-"1-=
ORCC OR condition code register 7—T Xl —!=1l=-1—1l—-[—[=
[e Jump = IXIX XXX x[x
JSR Jump to subroutine — | — Xt X{ X| X| X| X| X
RTI Return trom interrupt X —_] =} =] = =1 = -] —
RTS Return from subroutine X| =4 —| =1 =3~ - -] =
LSWISWS‘VJWQ Software interrupt (absolute indirect) X { - e e e B —
SYnC Synchronize with interrupt line L X I — f - =l —{ =t =] -} =

This chapter isatough one to understand. I'm reasonably sure
that on this firgt reading you haven't grasped everything that was
presented. You will quite naturally have to reread this chapter and
actudly try the concepts explained before they redly mean any-
thing to you. However, as a quick reference I've included Tables
3-8through 3-12 to hel p put the variousinstructionsin perspective
as far as addressing goes and get you ready for the next chapter on
the instruction set.

55

{4k

LS

Into the Instruction Set

Now that you have an understanding of how the 6809 puP works and
the various methods of addressing, the next step is to become
familiar with the ingtruction set. As discussed in Chapter 1, the
6809 is dmilar to that of the 6800 P, and in most cases has the
same ingructions except where noted in Chapter 2. The 6809 uP
as designed is upward compatible at the source level. This means
that you can use 6800 instructions in a 6809 assembly and end up
with a working program, which you will see in Chapter 6.

One difference that is readily discernible is the number of
opcodes has been reduced from 72 to 59, primarily because of the
expanded architecture and additional addressing modes. See Chap-
ter 3. Because of the additiond addressing modes, the number of
available opcodes hasrisen from 197 to 1464—aconsiderablejump
and indication of thetype of programming power you have available
to you. Before getting into abreskdown of theinstruction codes, a
brief overview is dueto give you a better idea of what isin store.

PUSH-PULL AND ADDRESS IT

Some things you might not be aware of are the use of push
(PSH) and pull (PUL), the transferring of register contents (TFR)
and (EXG), the method of loading the EA (LEA), multiplying
accumulators (MUL), and long and short relative branches. These
and other functions of the 6809 P are important concerns for the
programmer to become familiar with and are covered hereto assist
in understanding.

56

PSHU/PSHS

The push instructions have the capability of pushing onto
either hardware stack (S) or user stack (U). Any or al of the MPU
register with asingle instruction. In Chapter 3 | showed you how a
register set could be predefined to permit pushing several defined
registers on the stack at one time.

PULU/PULS

The pull instructions have the same capability of the push
instruction in reverse order. The byte immediately following the
push or pull opcode determines which register or registers are to
be pushed or pulled. The actual PUSH/PULL sequence is fixed;
each bit defines a unique register to push or pull. This push/pull
postbyte was demonstrated in Table 3-5.

TFR/IEXG

One of the powerful features of the 6809 pP is that any
register of like size may be transferred content wise with the
other, or the contents exchanged. For example, an 8-bit register
can be transferred or exchanged with another 8-bit register and so
on. When thisfeature isused, the bits 4-7 of the postbyte define the
source register while bits 0-3 represent the destination. The fal-
lowing combinations are the valid definitions for these register
transfers.

0000 - D 0101 - PC
0001 - X 1000 - A
0010 - Y 1001 -B
0011 - U 1010 - CC
0100 - S 1011 - DP

Load Effective Address (LEA)

One of the methods used by the 6809 P to speed up proces-
sing is to use this instruction. What happens is that the LEA
calculates the EA used in an indexed instruction and stores that
address value, rather than the data at that address, in a pointer
register. This functional addressing makes all the features of the
internal addressing hardware available to the programmer, and
suggests that the 6809 is a 16-bit processor in reality. Table4-1is
an example of LEA and demonstrates its power.

Multiply (MUL)

This is a powerful instruction that multiplies unsigned binary
numbers in the A and B accumulator and then places the result into

57

Table 4-1.LEA Examples (courtesy of American Microsystems, Inc.),

Instruction Operation Comment
LEAX 10,X X+10 ->X ! Adds 5-bit constant 10 to X
LEAX 500,X X+500 ->X ! Adds 6-bit constant 500 to X
LEAY AY Y+A ->Y ! Adds 8-bit accumulator to Y
LEAY -10,U U-10 ->U ! Subtracts 10 from 11
LEAS -10,S s-10 ->S I Used to reserve area on stack
LEAS 10,S S+10 ->S I Used to clean up stack
LEAX 5S S+5 ->X | Transfers as well as adds.

the 16-bit D accumulator. This permits multiple-precision multi-
plications.

Long and Short Relative Branches

| would imagine that the first thing that comes to mind is that
this is really something difficult to master. Actualy, the 6809 has
the capability of PC relative branching throughout the entire mem-
ory map. When in this mode and a branch is to be taken, the 8 or
16-bit offset value is added to the PC to make the EA. Con-
sequently, this permits the processor to branch anywhere within a
64K memory map. Position independent code can be easily gener-
ated by using relative branching. Incidentally, short refers to 8-bit
and long to 16-bit.

SYNC

This is aunique instruction since it stops the MPU and makes
it wait for an interrupt. If the pending interrupt is nonmaskable
(NMI) or maskable (FIRQ, IRQ) with its mask bit (F or 1) clear, the
processor will clear the Sync state and perform the normal inter-
rupt stacking and servicing routine. You can see that this makes it
possible to handle specialized interrupts and develop programs
that work well in process control or data acquisition.

Software Interrupts (SWB)

If you are familiar with the 6800 P, then you have someideas
what a software interrupt is for. It is the instruction that will cause
an interrupt in the course of program execution and will permit a
goto for the associated vector fetch. Three levels of SWI are
available on the 6809 and have a priority status of SWI, SWI2 and
SWiI3.

58

18-Bit Operations

These operations make the 6809 a high-powered pP and
excellent precursor to 16-bit processors. The 6809 can process
16-bit datas on an 8-bit structure with almost the same power as its
big brother the 68000. Included in these 16-bit instructions are:
loads, stores, compares, adds, subtracts, transfers, exchanges,
pushes and pulls. Refer again to Tables 3-8 through 3-12 which are
summaries of the instruction set. Associated with this chapter is
Appendix B which covers the hexadecima values of machine
codes, coupled with Appendix C, the programmer's quick refer-
ence card.

INDIVIDUAL INSTRUCTIONS

The next several pages will cover each instruction available
on the 6809 PP. You will notice that in concert with the instruction
mnemonic, | have provided the various addressing modes and the
associated opcode. This sequence of presentation is coupled with
the Instruction Index, located in Appendix D. The purpose is to
assist you in finding the proper instruction for a particular purpose.
| would suggest that as you proceed through this section of the
chapter you look at the programmer's card, found in Appendix C,
and use it to follow along. This will help you become familiar with
each instruction and the card.

See Tables 4-2 and 4-3 for the notation that is used in the
explanation of the instruction set. The notation is used by Motorola
and consequently provides continuity in explanation.

ABX ADD ACCB INTO IX
SOURCE FORM: ABX

OPERATION: X' - IX + ACCB
CONDITION CODES NOT AFFECTED

DESCRIPTION: -

Add the 8-bit unsigned value in Accumulator B into the
X index register.

ADDRESSING MODE: OPCODE MPU NO OF
CYCLES BYTES

INHERENT 3A 3 1

59

ADC ADD WITH CARRY MEMORY INTO REGISTER
SOURCE FORM: ADCAP ; ADCB P

OPERATION: R’ - R + M + C
CONDITION CODES

H: Set if the operation caused a carry from bit
3 in the ALU.

N: Set if bit 7 of the result is set.

Z Set if dl bits of the result are clear.

V: Set if the operation caused an 8-hit two's

complement arithmetic overflow.
C Set if the operation caused a carry from bit
7 in the ALU.
DESCRIPTION:
Adds the contents of the carry flag and the memory
byte into an 8-bit register.

REGISTER ADDRESSNG MODE: Accumulator
ADCA
MPU NO OF
ADDRESSING MODE OPCODE cveLes | BYTES
IMMEDIATE 89 2 2
DIRECT 99 4 2
INDEXED A9 4+ 2+
EXTENDED B9 5 3
ADCB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
IMMEDIATE C9 2 2
DIRECT D9 4 2
INDEXED E9 4+ 2+
EXTENDED F9 5 3

Operation Notation

Table 4-2. Operation Notation (cour- R’ = is transferred
tesy of Motorola Semiconductor Pro- = Boolean AND
ducts Inc.) v = Boolean OR
= oolean -
w ® Boolean EXCLUSIVE-OR
- = (overline) = Boolean NOT

Concatenation

60

ADD ADD MEMORY INTO REGISTER - 8BIT
SOURCE FORMS ADDA P, ADDB P
OPERATION: R -~ R + M
CONDITION CODES
H: Set if the operation caused a carry from bit
3inthe ALU.
N: Setif bit 7 of the result is set
Z Set if dl bits of the result are clear.
V: Set if the operation caused an 8-hit two's
complement arithmetic overflow.
C Set if the operation caused a carry from bit
7 inthe ALU.
DESCRIPTION:
Adds the memory byte into an 8-bit register.
REGISTER ADDRESSING MODE: Accumulator

ADDA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
IMMEDIATE 8B 2 2
DIRECT 9B 4 2
INDEXED AB 4+ 2+
EXTENDED BB 5 3
ADDB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
IMMEDIATE CB 2 2
DIRECT DB 4 2
INDEXED EB 4+ 2+
EXTENDED FB 5 3
ADDD
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
IMMEDIATE C3 4 3
DIRECT D3 6 2
INDEXED E3 6+ 2+
EXTENDED F3 7 3

This instruction ADDD is the 16-bit version. For this the
16-bit version. For this the operationisR' =~ R+ M:M+1. The
condition codesare: H: not affected; N: Set if bit 15 of the result

61

29

Register Notation
ACCA = A = Accumulator A
ACCB = B = Accumulator B
ACCX = Either ACCA or ACCB
ACCA:ACCB = D = Double Accumulator
IX = X = Index Register X
Y =Y = Index Register Y
SP = S = Hardware Stack Pointer
"US = U = User Stack Pointer
DPR = DP = Direct Page Resister
CCR = CC = Condition Code Resistor
PC = Program Counter Table 4-3. Register Notation (courtesy of
R = A register before the operation; Motorola Semiconductor Products Inc.).
A,B,C,D,X,Y,U,S,PC,DP or CC (usually,
only a subset of registers is legal,
these are specified by 'Register
Addressing Mode' in the individual
instructions).
R’ = A register after the operation
ALL = All Registors; A,B,D,X,Y,U,S,PC,DP and CC
77 = A pointer register; X,Y,U,S
MSB = Most-Significant BIT
MS BYTE = Most-Significant BYTE
LS BYTE = Least-Significant BYTE
IXH = MS Byte of Index X
IXL = LS Byte of Index X

isset; Z: Setif dl bitsof theresult are clear; V: Set if there
was a 16-hit two's complement arithmetic overflow; and C: set if
the operation on the M S byte caused a carry from bit 7 in the ALU.
This instruction adds the 16-bit memory value into the 16-bit
accumulator (D) and has a register addressing mode of double
accumulator. The memory addressing modes are shown above.

In the next group of instructions, the logica AND isimplied.
The logica AND is best explained by assuming that it has the
property such that if X and Y are two logic variables, then the
function X AND Y is defined by the following:

XY XANDY XY XANDY
00 0 10 0
01 0 11 1

A basic operation in Boolean algebra is the AND operation
which, for the two integers | and J, may be defined by saying if | and
Jareboth 1, then theresult is 1. If isO and Jis 1, then theresult is

0 and vice versa.

AND LOGICAL AND MEMORY INTO REGISTER
SOURCE FORMS ANDA P; ANDB P
OPERATION: R' - R A AND M
CONDITION CODES

H- Not Affected

N: Set if bit 7 of result is set

Z Set if dl bits of result are clear

V: Cleared

C Not affected

DESCRIPTION:
Performs the logicad "AND" operation between the
contents of ACCX and the contents of M and the result
is stored in ACCX.

REGISTER ADDRESSING MODE: Accumul ator
ANDA

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYYTES
IMMEDIATE 84 2 2
DIRECT 94 4 2
INDEXED A4 4+ 2+
EXTENDED B4 5 3

83

ANDB

ADDRESSING MODE

OPCODE

MPU
CYCLES

NO OF
BYTES

IMMEDIATE
DIRECT
INDEXED
EXTENDED

2
4
4+
5

2
2
2+
3

AND LOGICAL AND IMMEDIATE MEMORY INTO CCR

SOURCE FORM:

OPERATION: R

CONDITION
S. CCR -
DESCRIPTION:

ANDCC #XX
- R
CCR

A AND Ml

Mi

CODE-

Performs a logicd "AND" between the CCR and the
MI byte and places the result in the CCR.

ANDCC

ADDRESSING MODE

OPCODE

MPU
CYCLES

NO OF
BYTES

MEMORY IMMEDIATE

1C

3

2

ASL

ARITHMETIC SHIFT LEFT

OURCE FORM: A Q

OPERATION:

- ATl] -
b, - b,

¢ - b7,b7,..,blo—bﬁ...bo,bormo

CONDITION CODES
: Undefined

H:

N: Set if bit 7 of the result is set
Z Set if dl bits of the result are clear
V: Loaded with the result of (b,® bg) of

the origina operand.
C Loaded with bit 7 of the origind operand.

DESCRIPTION:

Shiftsdl bits of the operand one placeto the left. Bit O
is loaded with a zero. Bit 7 of the operand is shifted
into the carry flag.

64

ASA

MPU NO OF
ADDRESSING MODE OPCODE oveles | sytes
ACCUMULATOR 48 2 1
ASLB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
ACCUMULATOR 58 2 1
ASL
MPU NO OF
ADDRESSING MODE OPCODE CYOLES BYTES
DIRECT 08 6 2
EXTENDED 78 7 3
INDEXED 68 6+ 2+
ASR ARITHMETIC SHIFT RIGHT
SOURCE FORM: AR Q
OPERATION: |= [T T T TTTT]1~-~[C}
b b

7 0
C' e=by bob o= bbb’ e b

CONDITION CODES
H: Undefined
N: Set if bit 7 of the result is set
Z Set if dl bits of result are clear
V: Not afected
C Loaded with bit O of the origind operand

DESCRIPTION:
Shifts dl bits of the operand right one place. Bit 7 is
held congtant. Bit O is shifted into the carry flag. The
6800/01/02/03/08 processors do afect the V flag.

65

ASR

MPU NO OF
ADDRESSING MODE OPCODE SVCLES BYTES
INHERENT 57 2 1
DIRECT 07 6 2
EXTENDED 77 7 3
INDEXED 67 6+ 2+
ASRA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
INHERENT 47 2 1
BCC BRANCH ON CARRY CLEAR
SOURCE FORM: BCC dd. LBCC DDDD
OPERATION: TEMP = M|

if C=0THEN PCe= PC + TEMP
CONDITION CODES
Not afected
DESCRIPTION:
Teststhe state of the C hit and causesabranch if Cis
clear.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
When used dfter a subtract or compare on unsigned
binary values, this instruction could be called
"branch" if the resister was higher or the same as

the memory operand.

BCC
MPU NO OF
ADDRESSING MODE OPCODE | ~0(e Nore
RELATIVE 24 3 2
LBCC LONG BRANCH
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 10 5(6) 4
BCS BRANCH ON CARRY SET
TEMP == M
OPERATION:

ifC=1THENPC « PC + TEMP

66

CONDITION CODES
Not affected
DESCRIPTION:
Tests the state of the C bit and causes a branch if Cis
set.
MEMORY ADDRESSING MODES Memory Immediate
COMMENTS
When used after a subtract or compare, on unsigned
binary values, this instruction could be called
"branch" if the register was lower than the memory

operand.
BCS
MPU NO OF
ADDRESSING MODE OPCODE CVOLES BYTES
RELATIVE 25 3 2
LBCS
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BEQ BRANCH ON EQUAL
SOURCE FORMS BEQ dd; LBEQ DDDD
OPERATION: TEMP == MI

ifZ=1THEN PC == PC + TEMP

CONDITION CODES
Not affected.
DESCRIPTION:
Teststhe state of the Z bhit and causes a branch if the Z
bit is set.
MEMORY ADDRESING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation, this
instruction will branch if the compared values-
signed or unsigned—were exactly the same.

BEQ
MPU NO OF
ADDRESSING MODE
OPCODE —[CYCLES BYTES
RELATIVE 27 3 2

67

LBEQ

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4

BGE BRANCH ON GREATER THAN OR EQUAL TO
ZERO

SOURCE FORMS BGE dd; LBGE DDDD
OPERATION: TEMP = MI
if [N® V] =0THEN PC < PC+ TEMP
CONDITION CODES
Not afected
DESCRIPTION:
Causesabranch if N and V are either both set or both
clear. For example, branch if the Sgn of avdid two's
complement result is, or would be, positive.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on two's
complement values, this ingruction will branch if
theregister wasgreater than or equd to the memory

operand.
BGE
MPU NO OF
ADDRESSING MODE OPCODE CVCLES BYTES
RELATIVE 2C 3 2
LBGE
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BGT Branch on Greater

SOURCE FORMS BGT dd; LBGT DDDD
OPERATION: TEMP = MI
ifZ V[N @ V] =0then PC'= PC+TEMP
CONDITION CODES: Not affected
DESCRIPTION:
Causes a branch if (N ad V are either both set or both
clear) and Z isclear. In other words, branch if the sgn of a
valid two's complement result is, or would be, positiveand
non-zero.

68

MEMORY ADDRESSNG MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on two's
complement values, this instruction will "branch if the
register was greater than the memory operand.”

BGT
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
RELATIVE 2E 3 2
LBGT
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BHI Branch if Higher
SOURCE FORMS BHI dd; LBHI DDDD
OPERATION: TEMP e= MI
if [C4Z] = 0then PC'e PC + TEMP
CONDITION CODES Not affected

DESCRIPTION:
Causes a branch if the previous operation caused neither a
carry nor a zero result.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on unsigned
binary values, this instruction will "branch if the register
was higher than the memory operand.” Not useful, in
general, after INC/DEC, LD/ST, TST/CLR/COM.

BHI
ADDRESSING MODE MPU NO OF
OPCODE MPY cs BYTES
RELATIVE 2 3 5
LBHI
MPU NO OF
ADDRESSING MODE OPCODE MY s NO OF
LONG RELATIVE) 50) 7

69

BHS Branch if Higher or Same
SOURCE FORM: BUS dd; LBHS DDDD
OPERATION: TEMP == MI
if C=0then PC «= PC'= PC + 1 MI
CONDITION CODES Not Affected
DESCRIPTION:
Teststhe state of the C-bit and causes abranchif Cis
clear.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
When used after a subtract or compare on unsigned bi-
nary values, this instruction will "branch if register was
higher than or same as the memory operand.” Thisis a
duplicate assembly-language mnemonic for the single
machine instruction BCC. Not useful, in general, after
INC/DEC, LD/ST, TST/CLR/COM.

BHS
MPU NO OF
ADDRESSING MODE opcope | Y o Noor
RELATIVE 24 3 2
LBHS
ADDRESSING MODE OPCODE M Es E‘%gg
LONG RELATIVE 10 56) 4
BIT Bit Test
SOURCE FORM: BIT P
OPERATION: TEMP «= R A M

CONDITION CODES
H: Not Affected
N: Set if bit 7 of the result is Set
Z: Set if dl bits of the result are Clear

V: Cleared
C: Not Affected
DESCRIPTION:

Performs the logical "AND" of the contents of ACCX and

the contents of M and modifies condition codes accord-

ingly. The contents of ACCX or M are not affected.
REGISTER ADDRESSING MODE: Accumulator

70

BITA

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT 95 4 2
EXTENDED BS 5 3
IMMEDIATE 85 2 2
INDEXED A5 4+ 2+
BITB
ADDRESSING MODE OPCODE E:/IsgLES g%cég
DIRECT D5 4 2
EXTENDED F5 5 3
IMMEDIATE c5 2 2
INDEXED E5 4+ 2+
BLE Branch on Less than or Equal to Zero
SOURCE FORM: BLE dd; LBLE DDDD
OPERATION: TEMP = M|
ifZV(N @ V)=1thenPC=PC+1
TEMP

CONDITION CODES

DESCRIPTION:

Not Affected

Causes a branch if the "Exclusive
OR" of theN and V bitsislorif Z=1.
That is, branch if the sign of avalid
two's complement result is — or
would be—negative.

MEMOR Y ADDRESSING MODE: Memory Immediate

COMMENTS

Used after a subtract or compare operdtion on two's
complement values, this instruction will "branch if the
register was lessthan or equd to the memory operand.”

BLE
MPU NO OF
OPCODE
ADDRESSING MODE CYCLES BYTES
RELATIVE oF 3 2
LBLE
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4

71

BLO Branch on Lower
SOURCE FORM: BLO dd; LBLO DDDD

OPERATION: TEMP = MI
if C=1then PC e« PC + TEMP

CONDITION CODES Not Affected
DESCRIPTION:

Teststhestate of the C bit and causesabranchif Cis Set.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS

When used after a subtract or compare on unsigned bi-
nary values, this instruction will "branch if the register
was lower" than the memory operand. Notethat thisisa
duplicate assembly-language mnemonic for the single
machine instruction BCS. Not useful, in general, after
INC/DEC, LD/ST, TST/CLR/COM.

BLO
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 25 3 2
LBLO
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BLS Branch on Lower or Same
SOURCE FORM: BLS dd; LBLS DDDD

OPERATION:TEMP ==~ M|
if (C vZ) =1then PC'+= PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:
Causes a branch if the previous operation caused either a
carry or a zero result.
MEMOR Y ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on unsigned
binary values, this instruction will "branch if the register
was lower than or the same as the memory operand.” Not
useful, in general, after INC/DEC, LD/ST, TST/CLR/

COM.

72

BLS

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 23 3 2

LBLS

MPU NO OF
ADDRESSING MODE OPCODE CYCLES BVTES
LONG RELATIVE 10 5(6) 4

BLT Branch on Less than Zero

SOURCE FORMS BLT dd; LBLT DDDD
OPERATION: TEMP == MI
if (N&® V)=1then PC' = PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:
Causes abranch if either, but not both, of theN or V bitsis
1. That is, branch if the sign of a valid two's complement
result is—or would be—negative.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used after a subtract or compare operation on two's
complement binary values, thisinstruction will "branch if
the register was less than the memory operand.”

BLT
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 2D 3 2
LBLT
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BMI Branch on Minus
SOURCE FORM: BMI dd; LBMI DDDD

OPERATION:TEMP = MI
if N=1then PC «~ PC + TEMP
CONDITION CODES Not affected

73

DESCRIPTION:
Tests the state of the N bit and causes abranch if N is set.

That is, branch if the sign of the two's complement result is
negative.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, this instruction will "branch if the (possibly in-
vaid result is minus."

BMI
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 2B 3 2
LBMI
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BNE Branch Not Equal
SOURCE FORMS BNE dd; LBNE DDDD
OPERATION: TEMP = MI
if Z=0then PC =~ PC + TEMP
CONDITION CODES Not Affected
DESCRIPTION:
Teststhe state of theZ bit and causes abranch if theZ bitis
clear.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS

Used After a subtract or compare operation on any binary
values, this instruction will "branch if the register is (or
would be) not equal to the memory operand."”

BNE
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
RELATIVE 26 3 >
LBNE
OPCODE MPU NO OF
ADDRESSING MODE SVOLES MO OF
LONG RELATIVE 10 5(6) 2

74

BPL Branch of Plus

SOURCE FORM: BPL dd; LBPL DDDD
OPERATION: TEMP = Ml

if N=0then PC' e« PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:

Tests the state of the N bit and causes a branch if N is
clear. That is, branch if the sign of the two's complement
result is positive.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, thisinstruction will "branch if the possibly invalid
result is positive."

BPL
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 2A 3 2
LBPL
ADDRESSING MODE OPCODE MPU NO OF
CYCLES CYTES
LONG RELATIVE 10 5(6) 4
BRA Branch Always
SOURCE FORMS BRA dd; LBRA DDDD
OPERATION: TEMP «= MI
PC' « PC + TEMP
CONDITION CODES Not Affected.
DESCRIPTION:
Causes an unconditional branch.
MEMOR Y ADDRESSING MODE: Memory Immediate
BRA
MPU NO OF
ADDRESSING MODE OPCODE CVOLES BYTES
RELATIVE 20 3 2
LBRA
ADDRESSING MODE OPCODE “C”$gLES g%(ég
LONG RELATIVE 16 5 3

75

BRN Branch Never

SOURCE FORM: BRN dd; LBRN DDDD
OPERATION: TEMP < MI
CONDITION CODES Not Affected
DESCRIPTION:
Does not cause a branch. Thisingruction is essentidly a
NO-OP, but has a bit pattern logicaly related to BRA.
MEMOR Y ADDRESSING MODE: Memory Immediate

BRN
MPU NO OF
ADDRESSING MODE OPCODE SVCLES BYTES
RELATIVE 21 3 2
LBRN
MPU NO OF
ADDRESSING MODE OPCODE CYOLES BYTES
LONG RELATIVE 10 5 4
BSR Branch to Subroutine

SOURCE FORM: BSR dd; LBSR DDDD
OPERATION: TEMP « MI
SP «= SP-1(SP) «~ PCL
SP = SP-1 (SP) «— PCH
PC' = PC + TEMP
CONDITION CODES Not affected
DESCRIPTION:
The program counter is pushed onto the stack. The pro-
gram counter is then loaded with the sum of the program
counter and the memory immediate offset.
MEMOR Y ADDRESIING MODE: Memory Immediae

BSR
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 8D 7 2
LBSR
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 17 9 3

76

BVC Branch on Overflow Clear

SOURCE FORM: BVC dd; LBVC DDDD
OPERATION: TEMP «— MI
if V. =0then PC'— PC + TEMP
CONDITION CODES Not Affected
DESCRIPTION:
Teststhe state of the V bit and causesabranch if the V bit
isclear. That is, branch if the two's complement result was
vdid.
MEMOR Y ADDRESING MODE: Memory Immediae
COMMENTS
Used after an operatiion on two's complement binary
values, thisinstruction will "branch if there was no over-

flow."
BVC
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
RELATIVE 28 3 2
LBVC
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
BVS Branch on Overflow Set

SOURCE FORM: BVS dd; LBVS DDDD
OPERATION: TEMP = MI
if V=1then PC = PC + TEMP
CONDITION CODES: Not Affected
DESCRIPTION:
Teststhe state of the V bit and causesabranch if the V bit
isset. That is, branch if the two's complement result was
invaid.
MEMORY ADDRESSING MODE: Memory Immediate
COMMENTS
Used after an operation on two's complement binary
values, thisingruction will "branch if there was an over-
flow." This instruction is also used after ASL or LS. to
detect binary floating-point normalization.

77

BVS

MPU NO OF
OPCODE
ADDRESSING MODE CYCLES BYTES
RELATIVE 29 3 2
LBVS
OPCODE MPU NO OF
ADDRESSING MODE CYCLES BYTES
LONG RELATIVE 10 5(6) 4
CLR Clear

SOURCEFORM: CLRQ
OPERATION: TEMP «~ M
M = 0015
CONDITION CODES
H: Not &ffected

N: Cleared

Z Set

V: Cleared

C. Cleared
DESCRIPTION:

ACCX or M isloaded with 00000000. The Clag iscleared
for 6800 compatibility.

CLRA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
INHERENT 4F 2 1
CLRB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
INHERENT 5F 2 1

78

CLR

MPU NO OF
ADDRESSING MODE OPCODE T CYCLES BYTES
DIRECT OF 6 2
EXTENDED 7F 7 3
INDEXED 6F 6+ ot
CMP Compare Memory from a Register - 8 Bits

SOURCE FORM; CMPA P, CMPB P -

OPERATION: TEMP «~ R-MJi.e, TEMP <R +M+1]

CONDITION CODES

H: Undefined

N: Set if bit 7 of the result is Set.

Z Set if dl bits of the result are Clear.

V: Set if the operation caused an 8-hit two's complement
overflow

C: Set if the subtraction did not cause a carry from bit 7 in the
ALU

DESCRIPTION:
Compares the contents of M from the contents of the
specified register and sets appropriate condition codes.
Neither M nor R is modified. The C flag represents a
borrow and is set inverse to the resulting binary carry.

REGISTER ADDRESSNG: Accumuletor

FLAG RESULTS

(N® V) =1RXT. M(2's comp)
C =1R.LO. M (undgned)
Z =1R.EQ M
CMPA
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT 91 4 2
EXTENDED B1 5 3
IMMEDIATE 81 2 2
INDEXED Al 4+ 2+
CMPB
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT D1 4 2
EXTENDED F1 5 3
IMMEDIATE c1 2 2
INDEXED El 4+ 2+

79

CMP Compare Memory From a Register - 16 Bits
SOURCEFORMS: CMPD P, GMPX P, CMPY P, CMPU P,
CMPSP
OPERATION: TEMP « R- M:M+ 1) (i.e.,, TEMP =
R+ M:M+ 1 +1)
CONDITION CODES
H: Unaffected
N: Set if bit 15 of the result is Set
Z Set if dl bits of the result are Clear.
V: Set if the operation caused a 16-hit two's com-
plement overflow.
C: S if the operation on the MS byte did not cause
a carry from bit 7 in the ALU
DESCRIPTION:
Compares the 16-hit contents of M:M+1 from the con
tents of the gpecified register and sets appropriate condi-
tion codes. Neither R nor M:M+1 is madified. The C flag
represents a borrow and is set inverse to the resulting
binary carry.
REGISTER ADDRESSING: Double Accumulator
Pointer (X, Y, S or U)
FLAG RESULTS
(N®V)=1R.LT. M (2's comp)
C=1R.LO. M (undgned)

Z=1R.EQ M
CMPD
MPU NO OF
ADDRESSING MODE OPCODE CVCLES BYTES
DIRECT 10 7 3
93
EXTENDED 10 8 4
B3
IMMEDIATE 10 5 4
83
INDEXED 10 7+ 3+)
A3
CMPS
MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
DIRECT 11 7 3
9C
EXTENDED 11 8 4
BC
IMMEDIATE 11 5 4
8C
INDEXED 11 7+ 3+
AC

80

CMPU

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 11 7 3
93
EXTENDED 11 8 4
B3
IMMEDIATE 11 5 4
83
INDEXED 1 7+ 3+
A3
CMPX
ADDRESSING MODE OPCODE | MPU NO OF
: CYCLES | BYTES
DIRECT 9C 6 2
EXTENDED BC 7 3
IMMEDIATE 8C 4 3
INDEXED AC 6+ 2+
CMPY
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 10 7 3
9C
EXTENDED 10 8 4
BC
IMMEDIATE 10 5 4
8C
INDEXED 10 7+ 3+
AC
COM Complement

SOURCE FORM: COM Q
OPERATION: Ne= O+M
CONDITION CODES
H: Not affected
N: Set if bit 7 of the result is Set
Z: Set if dl bits of the result are Clear

V: Cleared
C. Set
DESCRIPTION:

Replaces the contents of M or ACCX with its one's com-
plement (also called the logica complement). The carry
flag is set for 6800 compatibility.

81

COMMENTS
When operating on unsigned values, only BEQ and MBE
branches can be expected to behave properly. When
operating on two's complement values, al signed
branches are available.

COMA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
INHERENT 43 2 1
COMB
ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
INHERENT 53 2 1
CoM
ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
DIRECT 03 6 2
EXTENDED 73 7 3
INDEXED 63 6+ 2+
CWAI Clear and Wait for Interrupt
SOURCE FORM: CWAI #$XX IEJF[H]1IN]Z{V]C]

OPERATION:

CCR = CCR AMI (Possibly clear masks)
Set E (entire state saved)

SP = SP-1,(SP) = PCL FF = endble neither
SP = SP-1(SP = PCH EF = enable IRQ

SP = -1, = us BF = enable FIRQ
SP = SP-1,(SP) = USH AF = enable both

SP T SP-1,(SP) ™ IYL

SP e~ SP-1,(SP) = IYH

SP = SP-1(SP) = IXL

SP = SP-1(SP) = IXH

SP e~ SP-1 (SP) « DFR

SP ~= SP-1,(SP) = ACCB

SP «~ SP-1,(SP) =« ACCA

SP = SP-1, (P = R

8

N

CONDITION CODES Possibly cleared by the immediate
byte.
DESCRIPTION:
The CWAI instruction ANDs an immediate byte with the
condition code register which may clear interrupt
maskbit(s). It stacks the entire machine state on the
hardware stack and then looks for an interrupt. When a
nonmasked interrupt occurs, no further machine state will
be saved before vectoring to the interrupt handling
routine. This instruction replaced the 6800's CLI WAI
sequence, but does not tri-state the buses.
ADDRESSING MODE: Memory Immediate
COMMENTS
An FIRQ interrupt may enter its interrupt handler with
its entire machine state saved. The RTI will automati-
caly return the entire machine state after testing the E
bit of the recovered CCR.

CWAI
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES [BYTES
INHERENT 3C 20 2
DA Decimal Addition Adjust
SOURCE FORM: DAA

OPERATION: ACCA' = ACCA + CF(MSN):CF(LSN)
where CF is a Correction Factor, as follows:
The CF. for each nybble (BCD) digit) is deter-
mined separately, and is either 6 or O.

Least Sgnificant Nybble
CH(LSN) = 6if) H=1
or2) LSN > 9
Most Sgnificant Nybble
CF(MSN)=6if1) C =1
or2) MSN > 9
or3) MSN >8and LSN > 9

CONDITION CODES
H: Not affected
Set if MSB of result is Set
Set if dl bits of the result are Clear
Not defined

SNz

83

C Set if the operation caused a carry from bit 7 in the
ALU, or if the carry flag was Set before the oper-
ation.

DESCRIPTION:

The sequence of a single-byte add instruction on ACCA
(either ADDA or ADCA) and a following DAA instruction
results in a BCD addition with appropriate carry flag. Both
values to be added must be in proper BCD form (each
nybble such that 0 nybble 9). Multiple-precision
additions must add the carry generated by this DA into the
next higher digit during the add operation immediately
prior to the next DA.

ADDRESSNG MODE: ACCA
DAA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES

INHERENT 19 2 1
DEC Decrement
SOURCE FORM: DEC Q
OPERATION: M' o= M-1(i.e, M'" =M +FFy)

CONDITION CODES
H: Not affected
N: Set if bit 7 of result is Set
Z Set if dl bits of result are Clear
V: Set if the origina operand was 10000000
C Not affected
DESCRIPTION:

Subtract one from the operand. The carry flag is not &-
fected, thus allowing DEC to be a loopcounter in
multiple-precision computations.
COMMENTS
When operating on unsigned values only BEQ and BNE
branches can be expected to behave consistently. When
operating on two's complement values, al signed

branches are available.

DECA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 4A 2 1

84

DECB

ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 5A 2 1
DEC
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 0A 6 2
EXTENDED 7A 7 3
INDEXED 6A 6+ 2+
EOR Exclusive Or
SOURCE FORMS EORA P, EORB P
OPERATION: R — R & M
CONDITION CODES
H: Not affected
N: Set if bit 7 of result is Set
Z Set if dl bits of result are Clear
V: Cleared
C Not afected
DESCRIPTION:
The contents of memory isexclusve—ORed into an 8-bit
register.
REGISTER ADDRESSING MODES Accumulator
EORA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 9B 4 2
EXTENDED B8 5 3
IMMEDIATE 88 2 2
INDEXED A8 4+ 2+

85

EORB

ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES

DIRECT D8 4 2

EXTENDED F8 5 3

IMMEDIATE cs 2 2

INDEXED ES 4+ 2+

EXG Exchange Registers

SOURCE FORM: EXG RI, R2

OPERATION: Rl +—R2

CONDITION CODES Not affected (unless one of the regis-
ters is CCR)

DESCRIPTION:

Bits 3-0 of the immediate byte of the instruction define one
register, while bits 7-4 define the other, as follows:

0000 = A:B 1000 = A

0001 = X 1001 =B

0010 = Y 1010 = CCR
0011 = US 1011 = DPR
0100 = SP 1100 = Undefined
0101 = PC 1101 = Undefined
0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Registers may only be exchanged with registers of like size; i.e.,
8-bit with 8-bit, or 16 with 16.

EXG R, R2
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 1E 7 2
INC I ncrement
SOURCE FORM: INC Q
OPERATION: M = M+ 1

CONDITION CODE:
H: Not affected
N: Set if bit 7 of the result is Set
Z Set if dl bits of the result are Clear
V: Set if the origina operand was Q11111
C Not affected
DESCRIPTION:
Add one to the operand. The carry flag is not affected, thus
allowing INC to be used as a loop-counter in multiple-
precision computations.

86

COMMENTS
When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently.
When operating on two's complement values, al signed
branches are correctly available.

INCA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 4c 2 1
INCB
: MPU NO OF
ADDRESSING MODE OPCODE CYCLES BYTES
INHERENT 5C 2 1
INC
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT oC 6 2
EXTENDED 7C 7 3
INDEXED 6C 6+ 2+
JMP Jump to Effective Address
SOURCE FORM: JMP
OPERATION: PC'— EA
CONDITION CODES Not affected

DESCRIPTION:
Program control is transferred to the location equivalent

to the effective address.

JMP
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT OE 3 2
EXTENDED 7E 4 3
INDEXED 6E 3+ 2+
JSR Jump to Subroutine at Effective Address
SOURCE FORM: JSR
OPERATION: SP' = SP-1, (SP) = PCL
SP' — SP-1, (SP) = PCH
PC' =— EA
CONDITION CODES Not affected
DESCRIPTION:

Program control is transferred to the Effective Address
after storing the return address on the hardware stack.

87

ISR

ADDRESSING MODE OPCODE |MPU NO OF
CYCLES |BYTES

DIRECT aD 7 2
EXTENDED BD 8 3
INDEXED AD 7+ 2+

LD Load Register from Memory—S8 Bit

SOURCE FORMS LDA P, LDB P

OPERATION: R «—M

CONDITION CODES
H: Not affected

N: Set if bit of loaded deta is Set

Z Set if dl bits of loaded deta are Clear
V: Cleared
C Not affected

DESCRIPTION:
Load the contents of the addressed memory into theregis-
ter.
REGISTER ADDRESSING MODE: Accumulator
LDA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES _]BYTES
DIRECT 96 2 2
EXTENDED B6 5 3
IMMEDIATE 86, 2 2
INDEXED A6 4+ 2+
LDB
ADDRESSING MODE OPCODE { MPU NO OF
CYCLES | BYTES
DIRECT D6 4 2
EXTENDED F6 5 3
IMMEDIATE cé 2 2
INDEXED E6 4+ 2+
LD Load Register from Memory-—16 Bit
SOURCE FORM: LDD P, LDX P, LDY P, LDSP, LDU P
OPERATION: R = M:M+1
CONDITION CODES
H: Not affected
N: Set if bit 15 of loaded data is Set
z Set if dl bits of loaded data are Clear
V: Cleared
C Not afected

88

DESCRIPTION:

Load the contents of the addressed memory (two consecu-
tive memory locations) into the 16-bit register.
REGISTER ADDRESSING MODES Double Accumulator

Pointer (X, Y, S or

)
LDD
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES _|BYTES
DIRECT DC 5 2
EXTENDED FC 6 3
IMMEDIATE cc 3 3
INDEXED TEC 5+ 2+
LDS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES |BYTES
DIRECT 10 6 3
DE
EXTENDED 10 7 4
FE
IMMEDIATE 10 4 4
CE
INDEXED 10 6+ 3+
EE
LDU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES _| BYTES
DIRECT DE 5 2
EXTENDED FE 6 3
IMMEDIATE CE 3 3
INDEXED EE 5+ 2+
LDX
ADDRESSING MODE OPCODE |MPU NO OF
CYCLES |BYTES
DIRECT 9E 5 2
EXTENDED BE 6 3
IMMEDIATE 8E 3 3
INDEXED AE 5+ 2+
LDY
ADDRESSING MODE OPCODE | MPU NO OF
‘ CYCLES | BYTES
DIRECT 10 6 3
9F-9E
EXTENDED 10 7 4
BE
IMMEDIATE 10 4 4
8E
INDEXED 10 6+ 3+
AE

89

LEA Load Effective Address
SOURCE FORM: LEAX, LEAY, LEAS LEAU
OPERATION: R -~ EA :
CONDITION CODES
H: Not affected
N: Not afected
Z LEAX, LEAY: Set if dl bits of the result are
Clear.
LEAS LEAU: Not dfected
V. Not affected
C. ' Not dfected
DESCRIPTION:
Form the effective address to data using the memory
addressing mode. Load that address, not the data itsdlf,
into the pointer register.

LEAX and LEAY dfect Z to dlow use as counters and for
6800 INX/DEX compatibility. LEAU and LEAS do not
dfect Z to dlow for cleaning up the stack whilereturning Z
asaparameter to acdling routine, and for 6800 INS/DES

compatibility.
REGISTERADDRESS NG MODE: Pointer (X, Y, S, orU)
LEAS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES |BYTES
RELATIVE 32 4+ 2+
LEAU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
RELATIVE 33 4+ 2+
LEAX
ADDRESSING MODE OPCODE { MPU NO OF
CYCLES | BYTES
RELATIVE 30 4+ 2+
LEAY
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
RELATIVE 31 4+ 2+

90

LSL Logical sShift Left
SOURCE FORM: LSL Q
OPERATION: [C] ol I JTTITT] =0

b b

7 il

C e b,b’...b" e= b ...b, b’ = 0
CONDITION CODES
H: Undefined
N: Set if bit 7 of the result are Clear
Z: Set if all bits of the results are Clear.
V: Loaded with the result of (b; + bg) of the origina
operand.
cC Loaded with bit 7 of the original operand.
DESCRIPTION:
Shifts al bits of ACCX or M one place to the left. Bit Ois
loaded with a zero. Bit 7 of ACCX or M is shifted into the
carry flag. This is a duplicate assembly-language
mnemonic for the single machine instruction ASL.

LSA
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 48 2 1
L9 B
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT 58 2 1
LS
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 08 6 2
EXTENDED 78 7 3
INDEXED 68 6+ 2+
LSR Logical sShift Right
SOURCE FORM: LSR Q
OPERATION: 0 - [T JJ1I1r1]~- .
b, b,
C e= b,b’...b" e= b ...b,b’ e 0

0" To 6 1ttt Ty

91

CONDITION CODES
H: Not affected
N: Cleared
Z: Set if dl bits of the result are Clear
V: Not affected
cC Loaded with bit O of the original operand
DESCRIPTION:
Performs a logical shift right on the operand. Shifts a zero
into bit 7 and bit O into the carry flag. The 6800 processor
also affects the V flag.

LSRA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 44 2 1
LSRB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 54 2 1
LR
ADDRESSING MODE OPCODE| MPU NO OF
CYCLES | BYTES
DIRECT 04 6 2
EXTENDED 74 7 3
INDEXED 64 6+ 24+
MUL Multiply Accumulators
SOURCE FORM: MUL
OPERATION: ACCA"ACCB's——ACCA x ACCB

CONDITION CODES
H: Not affected
N: Not affected
Z Set if dl bits of the result are Clear
V: Not affected
C Set if ACCB hit 7 of result is Set.
DESCRIPTION:
Multiply the unsigned binary numbers in the accumulators
and pl acethe result in both accumulators. Unsigned multi-
ply alows multiple-precision operatlons The Carry flag
allows rounding the M S byte through the sequence MUL,
ADCA #0.

92

MUL

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES

INHERENT 3D 1 1
NEG : Negate
SOURCE FORM: NEG Q _
OPERATION: M' o= O0-M(i.e., M' &= M)]
CONDITION CODES ’

H: Undefined

N: Set if bit 7 of result is Set

Z: Set if al bits of result are Clear

V: Set if the original operand was 10000000

C Set if the operation did not cause a carry

from bit 7 in the ALU.

DESCRIPTION:
Replaces the operand with its two's complement. The CHlag
represents a borrow and is set inverse to the resulting
binary carry. Note that 80,6 is replaced by itself and only in
this case is V Set. The value 0044 is also replaced by itsdf,
and only in this case is C cleared.

FLAG RESULTS

(N®V)=1if0.LT. M (2's comp)

C=1if 0.LO. M (unsigned)
Z=1if0.EQ. M
NEGA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 40 2 1
NEGB
ADDRESSING MODE OPCODE [MPU NO OF
CYCLES | BYTES
INHERENT 50 2 1
NEG
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 00 6 2
EXTENDED 70 7 3
INDEXED 60 6+ 2+

93

NOP
SOURCE FORM: NOP
CONDITION CODES Not affected
DESCRIPTION:
Thisis a single-byte instruction that causes only the pro-
gram counter to be incremented. No other registers or
memory contents are affected.

No Operation

NOP
ADDRESSING MODE OPCODE { MPU NO OF
CYCLES | BYTES
INHERENT ©r 2 1
OR Inclusive OR Memory into Register
SOURCE FORMS: ORA P; ORB P
OPERATION: R = RvVM

CONDITION CODES
H: Not affected
N: Set if high order bit of result Set

Z: Set if dl bits of result are Clear
V: Cleared
C Not affected

DESCRIPTION:

Performs an "Inclusive OR" operation between the con-
tents of ACCX and the contents of M and the result is

stored in ACCX.
REGISTER ADDRESS MODE: Accumulator
ORA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 9A 4 2
EXTENDED BA 5 3
IMMEDIATE 8A 2 2
INDEXED AA 4+ 24
OREB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT DA 4 2
EXTENDED ' FA 5 3
IMMEDIATE CA 2 2
INDEXED EA 4+ 24

94

OR Inclusive OR Memory-Immediate into CCR

SOURCE FORM: ORCC #XX

OPERATION: R = RvMI

CONDITION CODES CCR «= CCRV MI

DESCRIPTION:
Performs an "Inclusive OR" operation between the con-
tents of CCR and the contents of MI, and the result is
placed in CCR. This instruction may be used to Set inter-
rupt masks (disable interrupts) or any other flag(s).

REGISTER ADDRESSNG MODE: CCR
MEMOR Y ADDRESSING MODE: Memory Immediate
ORCC
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
IMMEDIATE 1A 3 2
PSHS Push Registers on the Hardware Stack

SOURCE FORM: PSHS register list
PSHS #Label [PClU]Y!X[DPB]AlCC

OPERATION: push order
_ SP~— SP-1(SP) = PCL
if B7 of MI set, then: gp .- gp. 1 (SP) = PCH
P~ P-1 (P = usL
if B6 of MI set, then; gp «—~ Sp. 1 (SP) = UH
S = FP-1 (P - IYL
if BS of MI set, then: gp o gp.- 1 (SP) « IYH
SP — SP-1 (P « IXL
if B4 of Ml set, then: gp = SP- 1 (SP) - IXH
if B3 of MI set, then:. SP «— SP- 1 (SP) - DPR
if B2 of Ml set, then: SP «— SP- 1 (SP) « ACCB
if Bl of Ml set, then: SP = SP- 1 (SP) = ACCA
if BO of MI set, then: SP «— SP- 1 (P = CCR

CONDITION CODES: Not affected
DESCRIPTION:

Any, al, any subset or none of the MPU registers are pushed
onto the hardware stack, (excepting only the hardware stack

pointer itself).
MEMORY ADDRESSING MODE: Memory Immediate
PSHS
ADDRESSING MODE | OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 34 5+ 2

95

PSHU Push Registers on the User Stack
SOURCE FORM: PSHU register list
PSHU #LABEL [PC|S | Y [X[DPFB[A[CC

push order
OPERATION:
if B7 of Ml set, then: US = US- 1, (US < PCL
US == US- 1, (US « PCH
if B6 of Ml set, then: US = US- 1, (US < SPL
Us' = US- 1 (US) = SPH
if B5 of Ml set, then: US = US- 1, (US < IYL
US « US- 1, (US == IYH
if B4 of Ml set, then: US = US- 1, (US « IXL
US = US- 1, (U o IXH
if B3 of MI set, then: US = US- 1, (US . DPR
if B2 of Ml set, then: US « US- 1, (US .. ACCB
if Bl of Ml set, then. US = US- 1, (US <« ACCA
if BO of MI set, then: US = US- 1 (US = CCR

CONDITION CODES Not affected

DESCRIPTION:
Any, dl, any subset or none of the MPU registers are
pushed onto the user stack (excepting only the user stack
pointer itself).

MEMORY ADDRESSING MODE: Memory Immediate

PSHU
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 36 5+4 2
PULS Pull Registers from the Hardware Stack

SOURCE FORM: PULS register list
PULS #LABEL [PC|UTY |[X DPIBIA|CC

OPERATION: pu|| order
if BOd MI set, thenn CCR == (SP),SP' = SP+1
if Bl of Ml set, then: ACCA' = (SP), SP = SP+ 1
if B2 o Ml set, then: ACCB"= (SP), SP =— SP+ 1
if B4 o Ml set, then: IXH = (SP),SP = SP+1
IXL'" = (SP),SP = SP+1
if B5 d Ml set, then: IYH = (SP),SP =— SP+1
IYL'" == (SP), SP =— SP+1
if B6 d MI set, then: USH' «— (SP),SPP -~ SP+1
USL' =~ (SP),SP =— SP+1
if B7 of Ml set, then: PCH' = (SP),SP = SP+1
PCL' = (SP),SP = SP+1

CONDITION CODES
May be pulled from stack, otherwise unaffected
DESCRIPTION:
Any, al, any subset or none of the MPU registers are pulled
from the hardware stack, (excepting only the hardware
stack pointer itself). A single register may be "PULLED"
with condition-flags set by loading auto-increment from stack
(EX:LDA, St).
MEMORY ADDRESSING MODE: Memory Immediate
PULS

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES

INHERENT 35 5+ 2

PULU Pull Registers from the User Stack
SOURCE FORM: PULU register list

PULU #LABEL [PC[S[Y[X]DP[B]AICT

OPERATION: pull order
if BO of MI set, then: CCR = (US), US « US+ 1
if Bl of Ml set, then: ACCA' «— (US), US «~ US+1
if B2 of MI set, then: ACCB' « (US), US' = US+1
if B3 of Ml set, then: DPR' = (US), US = US+1
if B4 of Ml set, then: |xXH' = (US), US «— US+ 1
IXL' = (US), US « US+1
if BS of MI set, then: |yH' = (US,US ~ US+1
IyL' = (US),US o US+1
if B6 of MI set, then: gpy « (US), US ~ US+1
spL «~(US),US ~ US+1
if B7 of MI set, then: pcpr == (US), US - US+1
pcLr — (US,US <= US+1

CONDITION CODES
May be pulled from stack, otherwise unaffected.
DESCRIPTION:
Any all, any subset or none of the MPU registers are pulled
from the user stack (excepting only the user stack pointer
itself). A single register may be "PULLED" with condition-
flags set by doing an auto-increment load from the stack
(EX:LDX, U++))

MEMORY ADDRESING MODE: Memory Immediate

PULU
ADDRESSING MODE VPO NG OF
OPCODE CYCLES RYTES
INHERENT 37 5+ 2

97

ROL
SOURCE FORM: ROL Q

OPERATION:

(e, —

b

7

b

0

Rotate Left

Cr by b . by b, by, b=

CONDITION CODES
H: Not affected

N: Set if bit 7 of the result is Set

Z: St if dl bits of the result are Clear
V: Loaded with the result of (b; bg) of the origind operand.
C: Loaded with bit 7 of the origina operand

DESCRIPTION:

Rotate dl bits of the operand one place Ift through the carry

flag; this is a 9-hit rotation.

ROLA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 49 2 1
ROLB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 59 2 1
ROL
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 09 6 2
EXTENDED 79 7 3
INDEXED 69 6+ 2+
ROR Rotate Right
SOURCE FORM: ROR Q
1
OPERATION: T T I TI1
b? bu
Cc—bo, bs.”btj‘—b"”bl’ b -

CONDITION CODES
H: Not afected

N: Set if bit 7 of result is Set
Z: Setif dl bits of result are Clear

V: Not affected

C: Loaded with bit O of the previous operand

o8

DESCRIPTION:

Rotates al bits of the operand right one place through the
carry flag; this is a nine-bit rotation. The 6800 processor aso

affects the V flag.

RORA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 46 2 1
RORB -
ADDRESSING MODE OPCODE MPU NO OF
| CYCLES | BYTES
INHERENT 56 2 1
e RS —
ROR)
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 06 6 2
EXTENDED 76 7 3
INDEXED 66 6+ 2+

RTI
SOURCE FORM: RTI

Return from Interrupt

OPERATION: CCR (SP), SP = SP + 1

if CCR bit E is SET then:

if CCR bit E is CLEAR then:

ACCA'—(SP), SP' =SP + 1
ACCB'— (SP), SP =—SP + 1
DPR = (SP), SP ~SP + 1
IXH — (SP), SP' =SP + 1
IXL' ~—(SP), SP —SP+ 1
IYH' = (SP), SP ~SP+ 1
IYL' = (SP), SP' =SP + 1
USH' «=(SP), SP' «~SP + 1
USL' «—(SP), SP «=SP + 1
PCH' «—(SP), SP «SP + 1
PCL' «~(SP), SP «=SP + 1
PCH' —(SP), SP—SP+ 1
PCL' =(SP), SP —SP + 1

CONDITION CODES Recovered from stack

DESCRIPTION:

The saved machine state is recovered from the hardware
stack and control is returned to the interrupted program. If the
recovered E bit is CLEAR, it indicates that only a subset of the
machine state was saved (return address and condition codes) and
only that subset is to be recovered.

99

SBCB

ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT D2 4 2
EXTENDED F2 5 3
IMMEDIATE C2 2 2
INDEXED E2 4+ 2+
FEX Sign Extended

SOURCE FORM: SEX
OPERATION: If bit 7 of ACCB is set then ACCA' = FFg
else ACCA' « 006
CONDITION CODES
H: Not affected
N: Set if the MSB of the result is Set
Z Set if dl bits of ACCD are Clear
V: Not affected
C Not affected
DESCRIPTION:
This ingtruction trandforms a two's complement 8-bit
vauein ACCB into atwo's complement 16-bit vduein the
double accumulaor.

SEX
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
INHERENT D 2 1
ST Store Register Into Memory—38 Bits

SOURCE FORM: STAP, STBP
OPERATION: M' = R
CONDITION CODES
H: Not affected
N: Set if bit 7 of stored data was Set
Z Set if dl bits of stored data are Clear
V: Cleared
C Not affected
DESCRIPTION:
Writes the contents of an MPU register into a memory
location.
REGISTER ADDRESSING MODES Accumulator

101

RTI

ADDRESSING MODE OPCODE MPU NO OF
CYCLES | BYTES
INHERENT 3B 6/15 1
RTS Return from Subroutine

SOURCE FORM: RTS
OPERATION: PCH' = (SP), SP' = SP + 1
PCL' == (SP), SP' = SP + 1
CONDITION CODES. Not affected
DESCRIPTION:
Program control is returned from the subroutine to the calling
program. The return address is pulled from the stack.

RTS 4
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 39 5 1
SBC Subtract with Borrow

SOURCE FORMS SBCA P; SBCB P
OPERATION: R «=R-M-C(i.e, Re= R+ M + {)
CONDITION CODES
H: Undefined
N: Set if bit 7 of the result is Set
Z: Setif dl bits of the result are Clear
V: Setif the operation causes an 8-bit two's comple-
ment overflow
C. Set if the operation did not cause a carry from bit 7
in the ALU

DESCRIPTION:

Subtracts the contents of M and the borrow (in the carry flag)
from the contents of an 8-hit register, and places the result in that
register. The C flag represents a borrow and is set inverse to the
resulting binary carry.

REGISTER ADDRESSNG MODE: Accumulator

BCA
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
DIRECT 92 4 2
EXTENDED B2 5 3
IMMEDIATE 82 2 2
INDEXED A2 4+ 2+

100

STA

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 97 4 2
EXTENDED B7 5 3
INDEXED A7 4+ 2+
STB
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT D7 4 2
EXTENDED F7 5 3
INDEXED E7 4+ 2+
ST Store Register Into Memory—16-Bi

SOURCEFORM: STD P, STX P, STY P, STSP, STU P
OPERATION: M"M+1' = R
CONDITIONCODES

H: Not affected

N: Set if bit 15 of stored data was Set

Z: Set if dl bits of stored data are Clear

V: Cleared

C Not affected

DESCRIPTION: _
Write the 16 it register into consecutive memory loca-
tions

REGISTER ADDRESSING MODES: Double Accumulator

Pointer (X, Y, S or U)

STD
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT DD 5 2
EXTENDED FD 6 3
INDEXED ED 5+ 2+
STS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT 10 6 3
DF
EXTENDED 10 7 4
FF
INDEXED 10 6+ 3+
EF

102

STU

ADDRESSING MODE OPCODE { MPU NO OF
CYCLES | BYTES
DIRECT DF 5 2
EXTENDED FF 6 3
INDEXED EF 5+ 2+
STX
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
DIRECT oF 5 2
EXTENDED BF 6 3
INDEXED AF 5+ 2+
STY
ADDRESSING MODE OPCODE | MPU NO OF
CYCYLES | BYTES
DIRECT 10 6 3
oF
EXTENDED 10 7 4
DF
INDEXED 10
AF 6+ 3+
SUB Subtract Memory from Register—8 bit
SOURCE FORMS SUBA P, SUBB P
OPERATION: R e= R-M;M+1
CONDITION CODES
H: Undefined
N: Set if but 7 of the result is Set
Z: Set if al bits of the result are Clear
V: Set if the operation caused an 8-bit two's com-
plement overflow
C Set if the operation did not cause a carry from

bit 7 in the ALU
DESCRIPTION: :
Subtracts the value in M from the contents of an 8-bit
register. The Cflag represents a borrow and is set inverse
to the resulting carry.
REGISTER ADDRESSING MODE: Accumulator
FLAG RESULTS
(N@V)=1if RLT. M (two's comp)
C=1ifR.LO. M (unsigned)
Z=1ifR.EQ. M

103

SUBA

MPU NO OF
ADDRESSING MODE OPCODE CVYCLES BYTES
DIRECT 90 4 2
EXTENDED BC 5 3
IMMEDIATE 80 2 2
INDEXED A0 4+ 2+
SUBB
ADDRESSING MODE OPCODE | MPU NOOF
CYCLES | BYTES
DIRECT DO 4 2
EXTENDED FO 5 3
IMMEDIATE loo) 2 2
INDEXED EO 4+ 2+
SUB Subtract Memory from Register—16-Bit

SOURCE FORM: VBD P
OPERATION: R' =R - M:M+1[i.e, R; == R+ MM+1+]

CONDITION CODES
H: Uneffected
N: Set if bit 15 of result is Set
Z Set if dl bits of result are Clear
V: Set if the operation caused a 16-bit two's
complement overflow.
C: Set if the operation on the MS byte did not cause
acarry frombit 7 inthe ALU
DESCRIPTION:
This information subtracts the vaue in M:M+1 from the
16-bit accumulator. The C flag represents aborrow and is
set inverse to the resulting binary carry.
REGISTER ADDRESSING MODE: Double Accumulator
UBTRACT SETS
(Ne V)=1ifR.LT. M (two's comp)
C=1ifR.LO. M (unsgned)

Z=1ifR.EQ M
SUBD
ADDRESSING MODE OPCODE MPU NO OF
CYCLES BYTES
DIRECT 93 6 2
EXTENDED B3 7 3
IMMEDIATE 83 4 3
INDEXED A3 6+ 2+

104

Swi

Software Interrupt

SOURCE FORM: SWM

OPERATION:

Set E (entire state will be saved)

SP — SP-1 () -~ PCL
SP' = SP- 1 (SP) - PCH
SP «~ SP-1 (P - UL
SP ~— SP-1 (P ~ UH
SP = SP-1(SP) = IYL
SP «~ SP-1 (SP) = IYH
SP ~ SP- 1 (SP) = IXL
SP = SP-1 (P = IXH
SP = SP- 1 (SP) = DR
SP -~ SP-1 (SP) ~ ACCB
SP ~ SP- 1 (SP) = ACCA
SP ~ SP-1 (P -~ OCR

Set I, F (mask interrupts)
PC (FFFA):(FFFB)

CONDITION CODES Not affected

DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itsdf),
and control is transferred through the SWI vector.

SM SETSI| AND F BITS

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 3F 19 1
SWi2 Software Interrupt 2

SOURCEFORM: SWI2

OPERATION:

Set E (entire state saved) -

SP e« SP-1 (SP) = PCL

SP «= SP- 1 (SP) = PCH
SP e SP-1 (P = UL

SP = SP- 1 (SP) = UH
SP e~ SP-1 (SP) = IYL

SP ~ SP- 1 (SP) = IYH

SP = SP-1 (SP) = IXL

SP = -1 (P = IXH

SP = SP-1 (SP) = DR
SP = SP- 1 (SP) = ACCB
SP = SP- 1 (SP) « ACCA
SP = SP-1 (SP) = OCR
PC < (FFF4):(FFF5)

105

CONDITION CODES: Not afected

DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itsdlf),
and control is transferred through the SWI2 vector. SWVI2
is available to the end user and must not be used in

packaged software.
SWI2 DOES NOT AFFECT | AND F BITS
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 10 20 2

3F

SWI3

SOURCE FORM: SWM3
OPERATION: Set E (entire state will be saved)

CONDITION CODES
DESCRIPTION:

SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
SP
PC

Software Interrupt

— SP-1, () « PCH
- SP-1 (P -~ UL

- SP-1 () = UH
- SP-1L (S - IYL

- SP-1 (P « IYH

- SP-1 () - IXL

- SP-1L (P = IXH

~ SP-1 () -~ DR
~ SP-1 () — ACEB
~ SP-1 (SP) ~ ACCA
- SP-1 (P - CR

(FFF2):(FFF3)
Not Affected

All of the MPU registers are pushed onto the hardware
sack (excepting only the hardware stack pointer itsdlf),
and control is transferred through the SWI3 vector.

SWM3 DOES NOT AFFECT | AND F BITS

ADDRESSING MODE OPCODE | MPU NO OF
CYCLES BYTES
INHERENT 11 20 2

3F

106

SYNC

Synchronize to External Event

SOURCE FORM: SYNC

OPERATION: Stop processing instructions
CONDITION CODES Unaffected
DESCRIPTION:

When a SYNC ingtruction is executed, the MPU enters a
SYNCING state, stops processing instructions and waits
on aninterrupt. When an interrupt occurs, the SYNCING
stateis cleared and processing continues. |F the interrupt
is enabled, and the interrupt lasts 3 cycles or more, the
processor will perform the interrupt routine. If the inter-
rupt is masked or is shorter than 3 cycles long, the proces-
sor smply continuesto the next instruction (without stack-
ing registers). While SYNCING, the address and data
buses are tri-state.

COMMENTS

This ingtruction provides software synchronization with
ahardware process. Consider the high-speed acquisition
of datax

FOR DATA
FAST SYNC WAIT FOR DATA
-— interrupt!
LDA DISC DATA FROM DISC AND CLEAR
INTERRUPT
STA X+ PUT IN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.
The SYNCING stateis cleared by any interrupt, and any
enabled interrupt will probably destroy the transfer (this
may be used to provide MPU response to an emergency
condition).
The same connection used for interrupt-driven 1/0O ser-
vice may thus be used for high-speed data transfers by
setting the interrupt mask and usng SYNC.
SYNC
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES |BYTES
INHERENT 13 > =2 1

107

TFR Transfer Register to Register
SOURCE FORM: TFR Ry, Ry
OPERATION: R, = R;
CONDITION CODES: Not afected (Unless R, = CCR)
DESCRIPTION:
Bits 7-4 of theimmediate byte of the ingtruction define the
source register, while bits 3-0 define the degtination re-
gister, as follows

0000 = A:B 1000 = A

0001 =X 1001 = B

0010 =Y 1010 =CCR

0011 = US 1011 = DPR
0100 = SP 1100 = Undefined
0101 =PC 1101 = Undefined

0110 = Undefined 1110 = Undefined
0111 = Undefined 1111= Undefined

Registers may only be transferred between registers of
like Size; i.e., 8-bit to 8-hit, and 16 to 16.

TFRR1R2
ADDRESSING MODE OPCODE | MPU NO OF
CYCLES | BYTES
INHERENT 1F 7 2

TST Test
SOURCE FORM: TST Q '
OPERATION: TEMP = M-0
CONDITION CODES

H: Not affected

N: Set if bit 7 of the result is Set

Z: Set if dl bits of the result are Clear

V: Cleared
C Not affected
DESCRIPTION:

Sat condition code flags N and Z according to the contents

of M, and clear the V flag. The 6800 processor clearstheC

flag.

COMMENTS

The TST ingruction provides only minimum information
when testing unsigned values; since no undgned vdueis
less than zero, BLO and BLS have no utility. While BHI
could be used dfter TST, it provides exactly the same
control as BNE, which ispreferred. Thesigned branches
are available.

108

TSTA

ADDRESSI NG MODE OPCODE | MPU NO OF
CYCLES | BYTES
| NHERENT 4D 2 1
TSTB
ADDRESSI NG MODE OPCODE | MPU NO OF
CYCLES | BYTES
I NHERENT 5D 2 1
TST
ADDRESSI NG MODE OPCODE | MPU NO OF
CYCLES | BYTES
D RECT (OD) 6 2
EXTENDED 7D 7 3
| NDEXED 6D 6+ 2+

HARDWARE INSTRUCTION FIRQ Fast Interrupt Re-
quest

OPERATION: if F bit CLEAR, then:
SP=SP - 1 (SP)=—PCL
SP+~SP - 1, (SP)—PCH
Clear E (subset state is saved)
SP—SP- 1, (SP)=CCR
Set if, | (mask further interrupts)
PC' — (FFF6):(FFF7)
CONDITION CODES Not affected
DESCRIPTION:
A low level on the FIRQ input with the F bit clear causes
this interrupt sequence to occur at the end of the current
ingtruction. The program counter and condiition code re-
gister are pushed onto the hardware stack. Program con+
trol is transferred through the FIRQ vector. An RTI re-
turns to the origind task. It is possible to enter an FIRQ
handler with the entire state saved if the FIRQ occurs after
CWAIL.
ADDRESSNG MODE: Absolute Indirect
COMMENTS
AnIRQ interrupt, having lower priority than the FIRQ, is
prevented from interrupting the FIRQ handling routine
by automatic setting of the flag. Thismask bit could then

109

be reset if priority was not desired, The IRQ alows
operations on memory, TST, INC, DEC, etc., without
the overhead of saving the entire machine state on the
stack.
HARDWARE INSTRUCTION IRQ Interrupt Request
OPERATION: IFF | bit CLEAR, then:

SPe=SP - 1, (SP)*=PCL

SPe=SP - 1, (SP)=PCH

SPe=SP- 1, (SP)=USL

SPe=SP- 1, (SP)*=UH

SPeSP - 1, (SP)=IYL

SPe=SP- 1 (SP)=IYH

SP=SP- 1 (SP)=IXL

SP*=SP- 1, (SP)*=IXH

SP=SP- 1, (SP)=DMR

SPe=SP- 1, (SP)=ACCB

SP+=SP- 1, (SP)=ACCA

Set E (entire state saved)

SP=SP- 1 (SP=CCR

Set | (mesk further IRQ interrupts)

PC' = (FFF8):(FFF9)

CONDITION CODES Not afected

DESCRIPTION:
If the IRQ mask bit | isclear, alow level on the IRQ input
causes this interrupt sequence to occur at the end of the
current ingtruction. Contral is returned to the interrupted
programviaan RTI. An FIRQ may interrupt an IRQ handl-
ing routine and be recognized anytime after the IRQ vector
is taken.

ADDRESSNG MODE: Absolute Indirect

HARDWARE INSTRUCTION NMI Non-Maskable Interrupt

OPERATION: SP = SP-1, (SP) - PCL
SP = SP-1, (SP) = PCH
SP = SP-1 (SP) = USL
SP «~ SP-1 (SP) = UH
SP <= SP-1,(SP) = IYL
SP = SP-1,(SP) « IYH
SP = SP-1,(SP) = IXL
SP = SP-1 (SP) = IXH

110

SP «~ SP-1,(SP) «DFR
SP e SP-1, (SP) — ACCB
SP =~ SP-1, (SP) ~ ACCA
Set E (entire state save)

SP = SP-1 (SP) - CCR
Set |, F (mask interrupts)
PC' = (FFFC):(FFFD)
CONDITION CODES: Not affected
DESCRIPTION:
A negative edge on the NMI input causes dl of the MPU
registers (except the hardware stack pointer SP) to be
pushed onto the hardware stack, starting at the end of the
current instruction. Program control is transferred
through the NMI vector. Successive negative edgesonthe
NMI input will cause successive NMI operations. The
NMI operation is internaly blocked by RESET, any
NMI-edge will be latched, and the operation will occur
after the firgt load into the stack pointer (LDS; TFR1,s;
EXGr,s; etc.).
ADDRESSING MODE: Absolute Indirect

HARDWARE INSTRUCTION RESTART
OPERATION: CCR = XIXIXXXX
DPR' « 004

PC « (FFFE):(FFFF)
CONDITION CODES Not afected
DESCRIPTION:
The MPU isinitidized (required after power-on) to start
program execution.
ADDRESSING MODE: Absolute Indirect

11

5'1‘!““""“”__

LAY

MEKG6809EA Assembler

Motorolahas not only devel oped the 6809D4 evauation unit, butis
supporting it with a variety of software. One piece of oftware
avalable from Motorola is the MEKGB09EA assembler. Thisisa
speciaized program that is designed to process source programs
written in M6809 assembly language. This "source” isthen trans-
lated into object programs that the firmware loaders on the D4
evauation unit can understand.

The previous chapter gave you definitions to the various
instruction codes that the 6809 understands and, in some cases,
examples of an assembly code. | will attempt in this chapter to give
you only the basics of the assembler. Should you desire to learn
more, the supporting software and D4 unit should be purchased
from Motorola, or the Radio Shack TRS-80 Color Computer or
Videotex should be bought.

BASICS OF THE ASSEMBLER

The assembler, as stated before, performs operations on
source code that contains specific operations which determine
what will happen when the program executes as an object, or
run-time, program. Some of these internals of the source file are
operations such as ingtruction codes, or assembler directives, and
labels—sometimes caled symbolic names, special operators and
specid symboals. Directives, which are part of the assembler's
operation, are specid codes that are entered into the sourcefile to
tell the assembler to perform a specific operation.

112

Essentially, the role of the assembler is to translate source
programs into object code in a format required by the systems'
loader. As you will seein Chapter 6, this will be for the D4. The
assembler is also used for archival purposes. Debugging the as-
sembler provides a listing which contains dl the information about
the program in logical fashion.

TYPICAL REQUIREMENTS

The assembler takes information in source form and trans-
lates it into object form. To do this, however, certain rules are
usually followed.

First, the source form of the program is a sequence of state-
ments written in ASCII characters following conventions that the .
specific assembler requires. Each input source line is terminated
with a carriage return. The source form usually consists of five
fields:

e Seguence number. This is not always required, but is
useful especialy in the editing function.

e Label or an asterik (*) implying a comment.

e Operation.

* Operand.

e Optiona comment.

Sequence Number

This is an option for programmer convenience for the
Motorola assembler. A sequence number can consist of up to five
decima digits but less than 65,536. When used, the segquence
number must be followed by a space.

Label Field

Thisfidd is right after the sequence number, or it can appear
asthefirst field. When an asterisk (*) isused, the lineis considered
by the assembler to be comment and is thus ignored. A blank
indicates that the field is empty and the line contains no label.

The symbol is a special form of a label and has the following
attributes:

* Usually consists of 1 to 6 characters.

e Only the following are considered valid symbol charac-
ters: A through Z, 0 through 9, "."—period, and adollar sign "$".

e A symbol must conS|st of either a period ".", or an
alphanumeric character as the first character.

113

e Certainsymbols: A, B, D, X, Y, U, S, CC, PC, PCR and
DP are reserved symbols used by the assembler and are never
used in the label field.

When a symbol is used, it may occur only once in the label
field. If it occurs in more than one label field, a reference to that
symbol will cause an error, sincethe assembler will have noideato
what you are referring.

A typical label can be used in an equate statement, that unique
statement that setsalabel equal to a specific value. Some examples
of labels are:

INCH EQU $FC00
.Gl LDA #$41

Operating Field

The operation field occurs directly after the label field in an
assembly language source statement. This field consists of an
operation code of three or four characters. Entriesin the operation
code field may be one of two types. Machine mnemonic operation
code entries correspond directly to M6809 machine instructions.
This operation code field includes the "A" or "B" character for the
"dual" or "accumulator" addressing modes. Directives are special
operation codes known to the assembler which control the assem-
bly process rather than being translated directly to machine lan-
guage.

The assembler searches for operation codes in the table of
machine operation codes and directives. If not found, an error
message is printed.

Operand Field

Interpretation of the operand field is dependent on the opera-
tion fidd. For the M6809 machine instructions, the operand field
must specify the addressing mode. The operand field formats and
the corresponding addressing modes are in Table 5-1.

Comment Field

The last field of an M6809 Assembly Language source line is
the comment field. This field is optional and is ignored by the
assembler except for being included in the listing. The comment
field is separated from the operand field (or the operator field if
there is no operand) by one or more blanks and may consist of any

114

Table 5-1. Operand Field Formats and Corresponding Addressing Modes.

M6809 Machine Instruction
Operand Format Addressing Mode

inherent and accumulator

no operand direct or extended

expression (direct will be used if possible)
; immediate
?;)Ezi(gsrgif:;né indexed (where "R" is an indexable
' register)

ASCII character. Thisfield isimportant in documenting the opera-
tion of a program.

EXPRESSIONS

An expression is a combination of symbols and/or numbers
separated by one of the arithmetic operators (+ ,-, *, or/). The
assembler evaluates expressions algebraically from left to right
without parenthetical grouping. There is no precedence hierarchy
among the arithmetic operators. A fractiona result, or inter-
mediate result obtained during the evaluation of an expression, will
be truncated to an integer value.

Constants

Decimal: < number >

Hexadecimal: $ < number > or < number > H (first digit in
latter case must be 0 - 9)

Octal: @ < number > or < number > 0 or < number > Q

Binary: % < number > or < number > B

ASCII Literals

' <character>: apostrophe followed by an ASCII character, except
carriage return. The result is the numeric value for the ASCII
character.

SYMBOLS

A symbol in an expression is similar to a symbol in the label
field except that the value of the symboal is referenced instead of
defined. An asterisk "*" is a special symbol recognized by the

115

Table 5-2. Assembly Listing.

&
$ &
& é'& $ e(? v & IS s
& S L s 8 §
§ S & Fo 3 F & &
2y & & & & F & & $§

0001 NAM ENDST
0002 OPT LLEN=80
0004 2000 ORG
00005 2000 10CE E0000 4 START $2000
00006 2004 10AE E4 6 LDY +$F0000
00007 2007 10AF 84 6 STY s
00008 200A 32 16 5 LEAS X
00010 2000 END -10,X
TOTAL ERRORS 00000
TOTAL WARNINGS 00000
PAGE 001 ENDST1 *PROGRAM NOT INDICATING EXECUTION START*
00001 NAM ENDST1
00002 OPT LLEN
00004 2000 ORG 140080
00005 2000 10CE E0000 $2000
00006 2004 10AE E4 6 LDY +$E000
00007 2007 10AF 84 6 STY s
00008 200A 32 16 5 LEAS X
00010 0000 END 10X
TOTAL ERRORS 0000
TOTAL WARNINGS 00000

assembler and represents the value of the current location counter
(first byte of an ingtruction), when used in the context of the
symbol.
A 16-bit integer vaue is associated with each symbol. This
valueis used in place of the symbol during expression evaluation.

Table 5-3. Standard Format for Assembly Listings.

Column Contents

15 Source line 1 - 5 digit decimal counter kept
by assembler.

7-10 Current Location Counter value (in hex).

12-15 Machine Operation Code (hex).

17-23 Operand Machine Code (if any) (hex).

25-26 Cycle Count of Execution Time (decimal).

28-33 Label Field.

35-39 Operation Field.

41-48 Operand Field (longer operand extends into
comment field).

50-Last Comment Field.

Column

116

The MEK6809EA assembler is a two-pass assembler. The
symbal tableisbuilt on thefirst pass. Object records and listing are
produced on the second pass. Certain expressions cannot be fully
evaluated during the first pass because they may contain (forward)
references to symbols which have not yet been defined. In some
cases, asymbol may not be defined before being used in the second
pass. Since the assembler cannot evauate such symbols, these
cases are treated as errors. Only one level of forward referencing
is dlowed.

ASSEMBLER LISTING

Assembler outputs include an assembly listing and an object
program (Table 5-2). The assembly listing includes the source
program as well as additiona information generated by the assem-
bler. Mog lines in the ligting correspond directly to a source
statement. Lines which do not correspond directly to asource line
include: page header line, error lines and expansion lines for the
FCC, FDB and FCB directives. Mog listing lines fdlow the
standard formet shown in Table 5-3.

117

. 6 -

LAY

Implementation of VTL-09

The implementation of BASC that is to be presented in the next
few pagesis basad on a design created by Gary Shannon and Frank
McCoy for the MITs 680b microcomputer. Their implementation
was named VTL-2 for Very Tiny Language, and permitted users of
the 680b to have high-leve language capability with only 1K bytes
of working memory space. VTL-2, origindly implemented, re-
quired only 768 bytes of memory and was written in such amanner
to be ROMable.

Asyou proceed through this chapter, you will realizethat the
amdl BASIC-like language we are talking about is quite powerful.
In fact, it most likely is still the mogt powerful smal interpreter
available today. The origind copyright was 1977 for the 6800
verson of VTL-2 and is still held by the Computer Store of Santa
Monica, Cdifornia The falowing pages are designed to assist you
in how to use what | cal VTL-09.

DIRECT AND PROGRAM STATEMENTS

The statements that may be entered as input to the VTL-09
interpreter are of two types: the direct statement, which has no
line number and is executed immediately after being entered; and
the program statement, which requires line numbers used to build
aprogram. Program statements are not executed until the program
isrun as opposed to theimmediate execution of direct statements.

118

The design of VTL-09 is simple, making it ideal for the
beginner and powerful enough for advanced purposes. An impor-
tant feature, not found with other versions of VTL, isthe inclusion
of calls to permit loading and dumping of programs to tape. The
implementation that is presented in this book is strictly for the
Motorola 6809D4 unit which is designed to load at $2000 hex.

PRELIMINARY CONCEPTS

Line numbers must precede each program statement. The
statements following the line number must be separated from the
number by at |east one space. As designed, each line must end with
a carriage return and be less than 73 characters in length.

Typically, line numbers are incremented in steps of 10. This
permits the addition of other statements if necessary. No line
renumbering utility is included, so care must be taken when first
beginning the program process.

Variables may be represented by any single alphabetic or
special character such as !"#$%&'()=-+*:;?/.><[]. Most of
these are available for the user to define as he wishes. A few of the
variable names, however, have been set aside for special pur-
poses. These so-called system variables will be discussed in detail
later.

The value assigned to avariable may be either a numeric value
in the range 0-65535, or asingle ASCII character, including control
characters. Numeric and string values may be freely interchanged,
in which case the characters are equivalent to the decimal value of
their ASCII code representation. Thus, it becomes possible to add
1 to the letter A, giving as a result the letter B.

ARITHMETIC OPERATIONS

The arithmetic operations permitted for use in expressions
are:

o+ addition

e - subtraction

e * multiplication

o /[division

= test for equality

e > test for greater than or equa to
e < test for less than

119

The test operations—equal to, greater than or equa to and less
than—all return avalue of zero if the test fails and a value of one if
the test is successful.

Expressions in VTL-09 may contain any number of variables
or numeric values—Iiterals—connected by any of the above opera-
tions. Parentheses may be used to alter the order of execution of
the operations. If no parentheses are included, the operations
proceed in strictly right to left order.

The value resulting from the expression must be assigned to
some variable name. Thisisdone with the equal sign. Note that the
symbol has two meanings depending on where it occurs in the
expression. The expression "A=B=C" means test b and c for
equality. If they are equal put aonein A; if they are unequal, put a
zero in A. Some of the examples of valid arithmetic expressions
would be:

Y=A*(X*X)+B*X+C with left to right execution. This is
equivalent to Y=(A*X*X+B)*X+C

Y=(A*X*X)+(B*X)+C which is equivalent 0 AX*+BX+C

Notice how the absence of parentheses around the quantity
B*X in the first expression has completely altered its meaning.
Keep the right to left order in mind, and when in doubt use
parentheses to control the order of evaluation.

SYSTEM VARIABLES

In order to conserve space and to provide a more consistent
syntax, VTL-09, like VTL-2 uses system variables to accomplish
functions usually done with special key words in other languages.
This convention is probably the single most important reason for
its tiny size. These special variables are used for such functions as
the BASIC PRINT, GOTO, GOSUB, RETURN, IF AND RAN-
DOM functions.

Pound Sign

The system variable number or pound sign (#) represents the
line number of the line being executed. Until the statement has
been completed, it will contain the current line number. For exam-
ple, the statement 100 A=# is equivalent to simply writing 100
A=100. After completion of a line, this variable will contain the
number of the next line to be executed. If nothing is done to the
variable, this will be the next line in the program text. If a state-

120

merit changes #, however, the next line executed will be the line
with the number that matches the value of #. Thus, the variable #
may be used to transfer contral to a different part of the program.
This then becomes the VTL-09 equivaent to the BASC GOTO:
#=300 means GOTO 300.

If the# variable should ever be set to zero by some statement,
thisvauewill beignored. The program will proceed asif no change
hed taken place. This fact dlows us to write IF statements in
VTL-09. Condder the falowing example:

10 X=I Set X equd to 1
20 #=(X=25)*50 If X=25 goto 50
30 X=X+1 add 1to x

40 #=20 goto 20

50 . : and so on

Notice that the quantity (X=25) will havethevdueone, if itis
truethat X isequd to 25, and thevalue zero if itisfase. When this
logicd valueismultiplied times 50, the result will either bezero or
50. If it is 50, the statement causes a goto 50 to occur. If the
statement is zero, then a goto 0 occurs, which is a dummy opera-
tion causng the next statement to be executed.

Exdamation Point

Teking advantage of left-to-right evauation, two bytes of
memory could be saved by writing 20 #=x=25*50. Each time the
vaue of # is changed by aprogram statement, the old value +1 is
saved in the system variable—exclamation point (1). In other
words, after executing a goto, the line number of the line that
follows the goto is saved so that a subroutine will know where to
return to whenfinished. Thus, the # variable is used for both goto
and gosub operations.

10X=1
20 #=100
3030 X=2
40 #=100
50 X=3
60 #=100

110 #=! goto where you came from
In this example, control proceeds from line 20 to line 100.
After that, line 110 causes control to return to line 30. When line 40
is executed, the subroutine at 100 will return to line 50.

121

The actual value stored inthe! variableis old line number +1.
If VTL doesn't find the exact line number, it will GO to the next
higher line number.

Question Mark

The system variable question mark (?) represents the user's
terminal. It can be either an input or an output, depending on which
side of the equa sign it appears.

The statement ?=A" is interpreted as PRINT A, and the
statement X=7? is interpreted as INPUT X. A ? can be included
anywhere within an expression.

10 ?="ENTER THREE VALUES"
20 A=(?+2+2)/3

30 ?="THE AVERAGE IS"

40 ?2=A

This program will request three inputs while executing line 20.

When typing in a reply to a request for input, the user may
enter any one of three different types of data: a decima number, a
variable name or any valid VTL-09 expression. Thus, for example,
the user may reply with such things as "1004" or A+B*(9/X). In
each case the expression is completely evaluated before the result
is passed to the input statement. The only exception isthat you are
not allowed to respond with another question mark as this will
mess up the line pointer in the interpreter, causing it to return an
improper value.

When the question mark is on the left side of the first equal
sign, it represents a print statement; on theright itisaninput. The
formatting of printing output can be controlled by either the inclu-
sion or omission of leading or trailing blanks, thus giving a similar
operation and PRINT USING.

Percent and Apostrophe

The system variable percent (%) contains the value of the
remainder of the last division operation. This value will remain the
same until the next division takes place.

The system variable apostrophe () represents a random
number. This number will have an unpredictable value in the range
0-65535. If called twice on the same line, the same value will be

122

returned both times. The value of the variable is scrambled each
time any statement is executed. Therefore, for best results it is
highly recommended that at least one computation be performed
before calling for the random value again.

Dollar Sign

In addition to decima numeric input and output, the system
variable dollar sign ($) is used to input and output single characters.
As with the question mark variable, A=$ means input a single
ASCII character and place its numeric value in A. Similarly, $=X
means PRINT the single ASCII character whose value is stored in
X.

10 A=65

20 $=A

30 A=A+1

40 #=A<91*20
50 ?=""

This example will print out as one continuous string al the
letters of the alphabet. If you wish to find out what decimal values
correspond to which characters, these can be found in any conver-
sion chart. Simply compute by typing the direct statement ?=$ and
then entering the character whose decimal value is to be found.

Asterisk

The system variable asterisk (*) represents the memory size
of your computer. For a system with 1K, this would be 1024.
Entering ?=* will give the amount of memory.

The system will accept a different definition to the amount of
memory. This can be entered by typing *=1024*17, for example,
for a 17K system that reserves 1K for user space.

Ampersand

The system variable ampersand (&) represents the next avail-
able byte of memory in the program buffer. When first initilized,
VTL-09 must be set to 264. Enter & =264 to set the buffer to first
byte. You will be able to find out how much remaining memory you
have after entering programs by typing ?=*-&.

Greater Than

The system variable greater than > isused to passavalueto a
machine language subroutine. When encountered on the left side of

123

the equal sign the expression is evaluated, the value is placed as a
16-bit integer inthe A and B registers, and a software interrupt is
generated. The value stored in > is pulled df the stack by the RTI
instruction. If you wish to change the value placed into the variable
you should first pull the condition of the stack. Then reset the
registers. See Chapters 3 and 4.

Cassette In (ClI) and Cassette Out (CO)

Two very special variables used by the VTL-09 are CI for
cassette in, which permits loading of programs from the tape
cassette; and CO for cassette out, which permits the saving of
programs. Programs and data can be saved using these commands.
For programs, they are entered in the direct mode, or they can be
embedded in a program. For example, to load datafrom a program,
the program must first spec space for the data using the & =xxxx.
Then ClI is invoked in concert with the 2.

10 &=2492 Some value that will allow sufficient
space for the data.
20?=Cl Load the data.

Notice no names are permitted—only very fundamenta loading
and saving.

SAMPLE PROGRAMS

As you can see, VTL-09 is easy as pie with no big surprises
built in. The purpose of it isto show you how easy it isto program a
6809 with avery useful application. The next several pages serve
as asummary to this chapter, on how to use VTL, and aroundup to
put this book in proper perspective (Table 6-1).

Relocatable Program

64000 A=# 64100 J=0

64010 B=& 64110 H=#+I

64020 C=# 64120 G=&+I/2+G

64030 &=B 64130 & =%

64040 ?="STARTING#?"; 64140 #=:G)>A*5*(C-A)+#
64050 D=7 64150 #=D->(A-1)+G>D)>1*C
64060 ?="STEP SIZE? "; 64160 :G)=D

64070 E=? 64170 & =& +|

64080 & =1 64180 J=D

64090 G=131 64190 D=D+E

124

64200 K=#+I 64230 #=H
64210 & =&+l 64240 &=B
64220 #=:G)>256*K 64250 ?="DONE"

This program is relocatable. It can be renumbered and will
gtill run. However, the step size between program steps must
remain constant or line 64140 will not work right. Also, the largest
number of the program to be renumbered must be less than the first
number of the renumber program.

Table 6-1. List of VTL-09 Features.

VARIABLE
AZ COMMON VARIABLES
USE FREELY FOR STORING VALUES

SYSTEM VARIABLES

! RETURN ADDRESS

POINTS TO THE LINE # AFTER THE LAST #= STATEMENT

POINTER FOR LITERAL PRINT STATEMENTS

LINE NUMBER

SINGLE CHARACTER STRING (INPUT OR OUTPUT)

REMAINDER AFTER THE LAST DIVIDE OPERATION

POINTS TO THE LAST BYTE OF PROGRAM

RANDOM NUMBER

SETS START OF PARENTHESIZED EXPRESSION

END

SETS END OF LINE

SETS END OF PARENTHESIZED EXPRESSION

SETS END OF ARRAY DESCRIPTION

% USED ALSO FOR REMARK STATEMENT

POINTS TO END OF MEMORY

MACHINE LANGUAGE SUBROUTINE

PRINT STATEMENT WHEN ON LEFT OF EQUAL SIGN

INPUT STATEMENT WHEN ON RIGHT OF EQUAL SIGN

: DEFINES START OF ARRAY DESCRIPTION

; WHEN FOLLOWING A LITERAL PRINT STATEMENT,
SAYS DO NOT PRINT CARRIAGE-RETURN LINE-FEED

— TR -

Ny

.—=i+ MAY BE USED FREELY AS STANDARD VARIABLES
.(/ t]1[BUT USE IS NOT RECOMMENDED FOR LEGIBILITY REASONS

OPERATORS

ADD TO PREVIOUS VALUE

SUBTRACT FROM PREVIOUS VALUE

MULTIPLY TIME PREVIOUS VALUUE

DIVIDE PREVIOUS VALUE BY

IS PREVIOUS VALUE EQUAL TO (YES = 1, NO =0)

IS PREVIOUS VALUE LESS THAN (YES = 1, NO = 0)

IS PREVIOUS VALUE EQUAL TO OR GREATER THAN (Y=1, N=0)
THE DEFAULT OPERATOR IS THE LESS THAN TEST.

+

vANT b

125

100
110

330

Time of Day Digital Clock Programs

126

Hurkle Program

2=""

?="A HURKLE IS HIDING ON A"
?="10 BY 10 GRID. HOMEBASE"
?="ON THE GRID IS POINT 00"
?="AND A GRIDPOINT IS ANY"
?="PAIR OF WHOLE NUMBERS"
?="TRY TO GUESS THE HURKLE'S"

?="GRIDPOINT. YOU GET 5 GUESSES"

7=
R=7100*0+%
A=R/10

8=%

K=1

?="GUESS#";

?=K

?=" 7

X=2/10

Y=%

o
#=X*10+Y=R*540
K=K+1

#=K=6*440

?="GO ",

#=Y =B*370+(4<B*360)

2="SOUTH";
#=370

2="NORTH";
#=X-A*410+(X <A* 400)
2="WEST";

390 #=410

400 2="EAST";

410 ="

420 ="

430 #=230

440 ="

450 ?="SORRY THAT'S 5 GUESSES"
460 ?="THE HURKLE IS AT ";
470 2=A

480 =B

40 ="

500 =" .

510 ?="LETS PLAY AGAIN."
520 ?2="HURKLE IS HIDING"
530 #=180

540 2="YOU FOUND HIM IN ";
550 7=K

560 ?=" GUESSES'

570 #=490

360
370

FOR 300 BAUD TERMINALS

10 ?="HOUR 7 150 ?="TIME: ",

20 H=? 160 ?=H/10

30 ?="MINUTE 7, 170 =%

40 M=? 180 ="'

50 ?="SECOND 7 190 ?=M/10

60 S=7 200 =%

70 ?="READY" 210 = =TI

80 A=% 220 7=S/10

NV S=S+1 230 =%

100 M=S/60+M 240 $=13

110 S=% 250 A=B

120 H=M/60+H 260 T=31

130 M=% 210 T=T-1

140 H=H/24*0+% 280 #=T=0*90

290 #=270

FOR 110 BAUD TERMINALS

10 ?="HOUR 7 70 ?="READY"

20 H=? 80 A=$%$

30 ?="MINUTE 7 90 S=S+1

40 M=? 100 M=S/60+M

50 ?="SECOND 7 110 S=%

60 S=7 120 H=M/60+H

130
140
150
160
170
180
190
200
210

M=%
H=H/24*0+%
2=H/10

=%
="

?=M/10
=%
?"...."“: ”?:": LU

?=5/10

Factorials Program
This program calculates factorials until it runs out of memory.
For 1K of memory, this is about 208!

10
20
30
40
50
60
70
80
20
i00
110
120
130
140
150
160
170
180

A=l

L=2

1)=1

=2

:N=0

I=1+1
#=L>1*50
—

—

?=A
?="="
P
I=L+1
I=1-1

#=: 1)=0*140
?=:1)
I=1-1
#=1=0*220

Weekday Program

10
20
30

40
50
60
70
80

#=440

?="DAY OF THE WEEK"
?="MONTH? "

M="?

#=M>13*40

#=M=0*40

2="DAY OFMONTH?"; *;

220
230
240
250
260
270
280
290
300
310

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

90

100
110
120
130
140
150
160

T HEAHAA>>>
Tl
W ®w
+
w

?=:1)/10

=%

#=170
A=A+1

=1

C=0

X=:1)

N=A*X

#=: 1)<X*320
D= 1)+C
C=: 1)/100
1)=%

I=1+1
#=L>1*250
#=C=0*80
L=L+1
#=*-&/2<L*380
:1)=C

#=290

D=?
2="YEAR?" "
Y=?

#=Y>1800* 230
#=Y <100* 150
#=70

2=

?="1S THAT 19;

127

170
180

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

=Y 370 #=340
=" 380 ?="THURS';
K=$ 390 #=430
#=K=89=0*70 400 ?="FRI";
?="ES" 410 #=430

Y=Y +1900 420 ?="SATUR";
C=Y/100 430 ?="DAY"
Y=% 440 :1)=0

#=Y /4* 0+%=0*280 450 :2)=3

1 1)=6 460 :3)=3

D 2)=2 470 :4)=6
N=Y/4+Y+D+:M)+(2*(C=18))/7*0+% 480 :5)=1
#=300+(20* W) 490 :6)=4
?="SUN"; 500 :7)=6
#=430 510 :8)=2
?="MON"; 520 :9)=5
#=430 530 :10)=0
?="TUES"; 540 :11)=3
#=430 550 :12)=5
?="WEDNES"; 560 #=20

Starshooter Program

883888888L

1=0
I=1+1

. 1)=46
#=1<41* 20
:25)=42
1=8

J=|
$=1-/7+64
o

100 S=1+J
110 $=:S)

120
130
HO
150
160
170
180
190
200

128

J=J+1

#=J=6* 160
="

#=100

I=1+7

ot

7=

#=1<43*70

ot

210
220
230
240
250
260
270
280
290
300
310
320
330

360
370
380
390
400

?="1 2 3 4 5"
?="YOUR MOVE --";

1=42

I=1+1

=%

#=: 1)=13*320

#=: 1)=3*580

#=: 1)=95=0* 250

I=1-1

#=260

A=:43)-64

="

#=A>6*230

B=:44)-48

#=B>6*230

S=A*7+1+B

="

#=:5)=42* 420
?="THAT'SNOT A STAR!"

410
420
430
440
450
460
470
480

#=230
:S)=46
C=S-7
#=520
C=S-1
#=520
C=S+1
#=520

490
500
510
520
530
540
550
560
570

C=S+7
#=520
#=60
=l.
#=: C)=42*560
:C)=42
H#=
:C)=46
H#=

The object of the game is to change this:

Factors of a Number Program

BEES8B388888E

5

150
160
170
180
190

Primes Program

10

20 #=D>Q*150

to

This version is for the TVT:

#=200 200 ?="NUMBER? "
D=D+2/3*0+%=0*2+(D>3)+D+| 210 N=?

Q=N/D 220 X=N
#=Q<D*300 230 $=22
#=%>1*20 240 ?="" "
=" 250 =N

=D 260 7=" s
N=Q 270 D=2

Q=N/D 280 #=30

#=%>1* 20 300 #=N=X*370
7= 310 #=N=1*340
P=| 320 ="

N=Q 330 7=N

Q=N/D 340 ="

P=P+1 350 ?="DONE"
#=% =0* 140 360 #=200

=P 370 ?="PRIME"
#=20 380 #=200

This version is for the 32 Char Terminal:

#=100

30 D=D+2/3*0+%=0*2+(D>3)+D+|
40 Q=N/D

129

50 #=%>1*20

60 N=N+2/3*0+%=0* 2+(N>3)+N+I

70 D=2

80 #=N<65533*40
90 #=N

100 $=28

101 #=102

102 ?="

104 2=""

106 =" "
110 ?=1
115 ?=*
120 N=2

”?:n n;

Craps! Program
10 T=100

20 $=22

30 ?="CRAPS!"
40 2=

5 ?="HOW MUCH DO YOU BET? - ",

60 B=?

70 #=B=0*90

80 ?="GOOD LUCK!"
90 #=B=8+*480
#=T>B* 160
2="TOO MUCH!"
2="YOU HAVE $';
2=T

?=" LEFT. "
#=40

60 ="

2="ROLL-";

A=?

$=22

2="FIRST ROLL: ";
#=500
#=R=7*360
#=R11*360
#=R<4*390
#=R=12*390

7=""

=R

?=" 1S YOUR POINT"
P=R

2="ROLL-":

Cipher Game Program

10 1=0
20 I=1+1
30 :-)=1+64

130

PRIMES'

610

A=l

B=N
#=B>10000* 200
$=32
#=B>1000*200
B*B*10

#=170

?=N

A=A+1
#A<5*60

A=0

#=60

150

170
180
190
195
200
205
210
220
230
240
250

A
#
#

$

500

R=7*390
=R=P*360
#=300

?="YOU WIN"
T=T+B

#=120

T=T-B

?="YOU LOSE"
#=T=0*430
#=120

?="YOU ARE BUSTED!"
?="MOVE OVER AND LET THE NEXT"
?="SUCKER TRY."
g

#=10

?="BE SERIOUS"
#=40

R='/6*0+% +1

?=R

X=X+11213

?=" AND ",
S='/6*0+%+1
X=X*56001

?=5

?=" *;
R=R+S

=R

’):")"

4=l

+=1<26*20

1=l
oz

70
80
0
100
110
120
130
140

160

M="/26* 0+%-+l
H=:M)
M)=:1)

: D=H

[=1+1
#=1<27*70
?="TEXT?
="

=27

=%

#=: 1)=13*220

#=: 1)=95=0*200

1=1-2

I=1+1

#=160

?:IIII

1=27

#=1 1)<64*270

#=: 1)>14*240

Phrase Sort Program

SREEE88388588E

$=22

1=0

[=1+1

=%

L=: 1)=95*2
I=I- L

#=: 1)>14*30
o

=1

K=l

J=K
#=:K)=32*160
#=:J)=32*150
#=:K)>: J*160

290

g

310
320

S8EIBERE

410
420

8888

388

o
?="CODE: "
P

=27

$=:1

#=: 1)=13*370
[=1+1

#=330

P
?2="SWITCH? - ;
A=$

B=%
#=B=64*370
=27

#=: 1)=A*490
#=: 1)=B=0*460
‘N=A

I=1+1

#=: 1)=13*290
#=430

: N=B

#=460

150 FK

270

K=K+1
#=:K)>14*120
H=:1)

D=

:J)=H

[=1+1

#=: 1)>14*100
=0

[=1+1

$=:1)

#=: 1)>14*240
o

131

Life (Fast Version) Program

10

8

SEES8838 58K

w
\'
o

#=370
SEY <Y +(Y=0*E)+(Y=F)-
¥ O+H(X<Q* X+(X=0*0)+X=Q))
: §)=: 9+2
X=X+1-(IX*3)+(F1=X*(Y=I))
Y=J1=X+Y
#=1+1>Y*20
#=90
#=: 1-1*O+J)/2* 0+%* 20
J=3+1-(0=J0)

[=J=1+]

)}._.#N.

X=J-1

Y=I-1

#=1<F*80

=1

J=I

o

P=0

K=I-1*O+J

: K)=: K)<5+(: K)>8)=0

P=P+: K)

$=: K)*10+32

J=J+1-(J=0*0)

#=1<J*200

[=1+1

#=1<F*200

?="GEN = ";

=G

G=G+1

=" POP = ";

=P

=1

J=I

#=0<P* 110+(P=0* 650)

=1

G=0

="SIZE? ",

0=?

TN
86

8838358

B
©
o1

RREBLEIBEELEES

626

BEARRRARER

Q=0+1
>='BY?",

E=?

F=E+1
J=O*E+2

#=J* 2+&>**390
: =0

I=I+1
#=J>1*470
#=631

=1

2=""

J=I

#=10*550

?="";
7=l
?=""
L=$

: - [*O+J)=L=32+(L=13)+(L=95)+(L=64)=0*6
J=J+1-(L=95*2)

#=1.=13*620+(L=64*510)

#=J<Q*570

I=1+1

#=1<F*510

#=631

#=150

$=22

$=18

$=32

$=18

$=22

$=18

$=32

$=18

$=!

Thisprogramtakesat least 2 K of memory to operate satisfac-

torily.

133

~‘ ApperldixA F

Motorola 6809D4

The MEK6809D4 advanced microcomputer evauation board and
MEKG68KPD keypad/display unit provide the necessary hardware
and firmware for a computer system based on the Motorola
MC6309 high performance microprocessor (Fig. A-1). The system
forms an evauation tool to facilitate the gpplication of Matorola
microprocessors and associated components.

The MEKB809D4A is used with an MEKG8KPD and is com-
plete with apower supply (Fig. A-2). The MEK6809D4B requires
an external power supply ad is used with RS-232 terminal or an
MEKG8R2D CRT interface plus a CRT and an ASCll keyboard.
See Table A-I.

The user can prototype dedicated systems plus write and
evaluate software programsin machine language, using a cassette
recorder/player for data storage. Provisons are made for exten-
sive system expansion.

HIGHLIGHTS

e System buffers are used between sections of the
MEK6809D4 board and between the board and its edge connectors.

* Hardware RAM and ROM page select register.

e 4K datic user RAM (eight sockets) may be mapped with
jumpers to gppear a any 4K block in the 64K basic memory space,
and in addition may be jumpered to gppear on a selected "RAM
page/or pages' as controlled by a 3-bit hardware RAM pageregis-
ter.

e Eight 24-pin ROM sockets may be configured to accept
combinations of ROM/EPROM types including 1K x 8 single or

134

Fig. A-1. The MEK6809KPD keypad/display unit (courtesy of Motorola
Semiconductor Products Inc.).

triple supply EPROMs or ROMs, 2K x 8 single or triple supply
EPROMs or ROMs, 4K x 8 ROMs or EPROMSs, or 8K x 8 ROMs
or EPROMs.

A ROM-based mapping technique is used to allow com-
pletely general address mapping of the eight ROM sockets any-
where in the 64K basic memory space with 1K resolution. In
addition, the sockets may be mapped on any "ROM page/or pages"
as controlled by a 3-hit hardware ROM page register.

e All memory and 1/O on the board is fully decoded, so that
address space not specificaly required on the D4 is available for
off-board mapping.

e A-12voltto- 5voltregulator isprovided to alow use of
3-supply EPROMSs on the D4. Supply voltages of +12, -12, and
+5 must be provided by the user.

* Hardware is provided which alows Monitor software to
store and recover Kansas City Standard 300-baud or 1200-baud
format cassette tape data.

e Interrupt driven stop-on-address comparator.

e System clock derived from 3.579 MHz on-board XTAL or
from a4 x TTL compatible external source.

e "Test" signa and logic provided to allow control of on-
board memory and I/O from an external processor through the
70-pin edge connector.

e Control and status lines provided for flexible hardware
control of MPU and bus decode drive logic. This allows for:
—Testing and debug
-Interrupts (RESET, NMI, IRQ, FIRQ)

135

—Interrupt vectoring by device (IVE, STKOP)
-Interrupt dissble (IRQE, FIRQE)

—Hadt and bus request (BREQ)

—Sow memory (MEMRDY)

-DMA

Thefollowing festures are standard on the MEK6809D4B and
may be included as options on the MEKG809D4A: RS-232 compat-
ible seria port including buffered handshake signals;, baud rate
generator providing baud rate clocksfor 110, 300, 600, 1200, 4800,
and 9600 baud rates; and address, data and control lines fully
buffered at bus interface.

MODEL TYPES

The MEKB909D4A has no RS-232 circuitry or address and
data buffers to the edge connector. The D4A is intended for use
with the MEKG8KPD keypad/display unit which has an on-board
power supply to operate the system. No RAMs are provided inthe
"user RAM" array. A 4K monitor program is provided (Fig. A-3
and Table A-2).

The MEK6809D4B is intended for use with an RS-232 serial
terminal or an MEKB8R2D CRT interface as the system terminal.
The D4B has RS-232 circuitry and data and address buffers.

To operatethe RS-232 interface, the user must supply +12V,
+5V, and-12V power. A4K + 2K monitor isprovided. No RAMs
are provided in the "user RAM" array.

Fig. A-2. The basic MEK6809D4 advanced microcompu